
Final Project: Game of Life

Logan Hunt

December 8, 2021

1 Description

From Wolfram MathWorld:

A cellular automaton is a collection of "colored" cells on a grid

of speci�ed shape that evolves through a number of discrete time

steps according to a set of rules based on the states of neighboring

cells. The rules are then applied iteratively for as many time steps

as desired.

Conway's Game of Life is one such automaton. In the Game of Life, the

rules for each cell are as follows (from Wikipedia):

1. Any live cell with fewer than two live neighbours dies, as if

by underpopulation.

2. Any live cell with two or three live neighbours lives on to

the next generation.

3. Any live cell with more than three live neighbours dies, as

if by overpopulation.

4. Any dead cell with exactly three live neighbours becomes a

live cell, as if by reproduction.

To help visualize this automaton I created a script to go through the

output of my Game of Life simulation and compile a video with �mpeg. As

an example, I've uploaded the output of a simulation with a 1920x1080 grid

of cells with 1000 iterations to YouTube. Each cell that is white is alive and

each black cell is dead.

There are four implementations of Conway's Game of Life in this project;

a serial implementation, a distributed memory implementation (in Open-

MPI), a shared memory implementation (in OpenMP), and a GPU imple-

mentation (in Cuda).

1

https://mathworld.wolfram.com/CellularAutomaton.html
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
https://www.youtube.com/watch?v=N_aUWYNqpeY


A timing study is performed on each implementation by calculating the

elapsed time of the program given varying sizes of initial grids and, in the

shared and distributed memory versions, a di�erent number of cores. In

each, both the time it takes to compute the next iteration and the total wall

clock time are measured.

2 Performance analysis (of Game of Life iteration
time)

Results can be found on a Google Sheet

2.1 Shared memory vs distributed memory

2.1.1 Runtime

In runtime, both implementations have the same property of decreasing over

an increasing number of cores in all problem sizes (as one would certainly

hope). As the problem size increases, the overall di�erences in the runtimes

of each implementation also decreases; meaning they follow the same trends.

This can be shown in the runtimes for both implmentations running on a

small grid and a large grid:

2

https://docs.google.com/spreadsheets/d/1QxCsyMFzk67Qpuv-xZ-tRny4jHMebXTrdq5ncc7C4Tw/edit?usp=sharing


Both seem to converge to some rational function. Using an online re-

gression calculator it was found that the MPI Life Computation (iteration

computation time only) runtime follows the function t(p) = 274.449
p0.985

with a

correlation coe�cient of r = −0.999892441. Since t is very close to being

a rational function of p, we know that the runtime �ts to what could be

expected: Tparallel =
Tserial

p .

2.1.2 Speedup

In speedup, both implementations tend to increase over an increasing number

of cores in all problem sizes. However, it doesn't strictly increase. With some

numbers of cores in the shared memory implementation, the speedup actually

decreases from its predecessor.

3



2.1.3 E�ciency

E�ciency is the ratio of speedup to p processors (E = S
p ), so it can be

thought of as the derivative of the speedup. Thus e�ciency can be measured

without plotting it explicitly.

By de�nition, a program is "strongly scalable" if it can keep its e�ciency

constant over a varying input size. In the results, it can be seen that the

slope of the Distributed Memory Life Computation Time line tends to be

constant, meaning that the e�ciency is also constant. Thus, the MPI version

is strongly scalable.

However, the shared memory (OpenMP) implementation does not seem

to be perfectly strongly scalable. As the problem size varies, the speedup

does not follow a constant slope. Instead, it tends to match the e�ciency of

4



the MPI implemenation until some point where the slope drops o�.

Theoretically, the OpenMP implementation should be just as strongly

scalable as the MPI implementation. One reason overhead could be present

is in thread scheduling.

2.2 CUDA Implementation

2.2.1 Runtime

For the CUDA implementation, di�erent grid sizes are used to measure the

iteration time as well as the wall time. Again, 1000 iterations are used for

the timing study.

Using an online regression calculator again, it was found that the runtime

as a function of input size can be expressed with by t(n) = (1.486)(10−7)n2+
(1.328)(10−6)n+ 0.02151 with a correlation coe�cient r = 0.9999278678.

Since the number of cores is constant, we would hope to see a quadratic

increase in the runtime as the input size grows. This is because the number

of cells increases with (input size)2.
Indeed, this is what we see.

5



2.2.2 Speedup

The speedup of the cuda implementation as input size increases tends to

follow a logarithmic curve, plateuing after around n = 1000. While I am not

entirely sure why it follows this trend, I guess it might have to do with the

warp scheduling.

2.2.3 E�ciency

Since the core count on the K80 is constant (4992 CUDA cores), the e�ciency

can be calculated by E = S
4992 . As the e�ciency is just a constant multiplied

by the speedup, the e�ciency graph will just be a scaled version of the

speedup graph. As such the e�ciency will not be constant over di�erent

input sizes since the speedup isn't, and thus the CUDA implementation is

not strongly scalable.

6


	Description
	Performance analysis (of Game of Life iteration time)
	Shared memory vs distributed memory
	Runtime
	Speedup
	Efficiency

	CUDA Implementation
	Runtime
	Speedup
	Efficiency



