
Homework 7

Elizabeth Hunt

November 27, 2023

1 Question One

See UTEST(eigen, dominant_eigenvalue) in test/eigen.t.c and the entry Eigen-Adjacent
-> dominant_eigenvalue in the LIZFCM API documentation.

2 Question Two

See UTEST(eigen, leslie_matrix_dominant_eigenvalue) in test/eigen.t.c and the entry
Eigen-Adjacent -> leslie_matrix in the LIZFCM API documentation.

3 Question Three

See UTEST(eigen, least_dominant_eigenvalue) in test/eigen.t.c which finds the least
dominant eigenvalue on the matrix:2 2 4
1 4 7
0 2 6


which has eigenvalues: 5 +

√
17, 2, 5−

√
17 and should thus produce 5−

√
17.

See also the entry Eigen-Adjacent -> least_dominant_eigenvalue in the LIZFCM API doc-
umentation.

4 Question Four

See UTEST(eigen, shifted_eigenvalue) in test/eigen.t.c which finds the least dominant
eigenvalue on the matrix:2 2 4
1 4 7
0 2 6


which has eigenvalues: 5 +

√
17, 2, 5−

√
17 and should thus produce 2.0.

With the initial guess: [0.5, 1.0, 0.75].
See also the entry Eigen-Adjacent -> shift_inverse_power_eigenvalue in the LIZFCM API
documentation.

5 Question Five

See UTEST(eigen, partition_find_eigenvalues) in test/eigen.t.c which finds the eigen-
values in a partition of 10 on the matrix:2 2 4
1 4 7
0 2 6


1



which has eigenvalues: 5 +
√
17, 2, 5 −

√
17, and should produce all three from the partitions

when given the guesses [0.5, 1.0, 0.75] from the questions above.
See also the entry Eigen-Adjacent -> partition_find_eigenvalues in the LIZFCM API doc-
umentation.

6 Question Six

Consider we have the results of two methods developed in this homework: least_dominant_eigenvalue,
and dominant_eigenvalue into lambda_0, lambda_n, respectively. Also assume that we have
the method implemented as we’ve introduced, shift_inverse_power_eigenvalue.
Then, we begin at the midpoint of lambda_0 and lambda_n, and compute the new_lambda =
shift_inverse_power_eigenvalue with a shift at the midpoint, and some given initial guess.

1. If the result is equal (or within some tolerance) to lambda_n then the closest eigenvalue
to the midpoint is still the dominant eigenvalue, and thus the next most dominant will be
on the left. Set lambda_n to the midpoint and reiterate.

2. If the result is greater or equal to lambda_0 we know an eigenvalue of greater or equal
magnitude exists on the right. So, we set lambda_0 to this eigenvalue associated with the
midpoint, and re-iterate.

3. Continue re-iterating until we hit some given maximum number of iterations. Finally we
will return new_lambda.

2


	Question One
	Question Two
	Question Three
	Question Four
	Question Five
	Question Six

