26 lines
590 B
Org Mode
26 lines
590 B
Org Mode
|
* Power Method
|
||
|
v_{k+1} = A v_k, k = 0,1,2
|
||
|
|
||
|
** Properties
|
||
|
1. \frac{A v_k}{||v_k||} \rightarrow v_1
|
||
|
2. \frac{v_k^T A v_k}{v_k^T v_k} \rightarrow \lambda_1
|
||
|
3. If \lambda is a n eigenvalue of A, then \frac{1}{\lambda} is an eigenvalue of A^-1
|
||
|
4. Av = \lambda v
|
||
|
Av - \mu v = (\lambda-\mu)v = (A - \mu I)v
|
||
|
5. If \lambda is an eigenvalue of A, then \lambda - \mu is an eigenvalue of A \cdot \mu I
|
||
|
|
||
|
** Shifting Eigenvalues
|
||
|
1. Partition [\lambda_n, \lambda_1]
|
||
|
|
||
|
|
||
|
* Lanczos Algorithm
|
||
|
|
||
|
#+BEGIN_SRC c
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
sum = a0;
|
||
|
v_dot_v(a[i], x);
|
||
|
|
||
|
b[i] = sum;
|
||
|
}
|
||
|
#+END_SRC
|