22 lines
491 B
Org Mode
22 lines
491 B
Org Mode
|
* Review & Summary
|
||
|
Approx f'(a) with
|
||
|
|
||
|
+ forward difference $f'(a) \approx \frac{f(a+h) - f(a)}{h}$
|
||
|
|
||
|
+ backward difference $f'(a) \approx \frac{f(a) - f(a-h)}{h}$
|
||
|
|
||
|
+ central difference $f'(a) \approx \frac{f(a+h) - f(a-h)}{2h}$
|
||
|
|
||
|
** Taylor Series
|
||
|
given $C = \frac{1}{2}(|f''(\xi)|) \cdot h^1$
|
||
|
|
||
|
with f.d. $e_{\text{abs}} \leq Ch^1$
|
||
|
|
||
|
b.d. $e_{\text{abs}} \leq Ch^1$
|
||
|
|
||
|
c.d. $e_{\text{abs}} \leq Ch^2$
|
||
|
|
||
|
$e_{\text{abs}} \leq Ch^r$
|
||
|
|
||
|
$log(e(h)) \leq log(ch^r) = log(C) + log(h^r) = log(C) + rlog(h)$
|