97 lines
2.5 KiB
C
97 lines
2.5 KiB
C
|
#include "lizfcm.test.h"
|
||
|
|
||
|
UTEST(matrix, free) {
|
||
|
Matrix_double *m = InitMatrixWithSize(double, 8, 8, 0.0);
|
||
|
uint64_t data_addr = (uint64_t)(m->data);
|
||
|
free_matrix(m);
|
||
|
EXPECT_NE(data_addr, (uint64_t)(m->data));
|
||
|
}
|
||
|
|
||
|
UTEST(matrix, put_identity_diagonal) {
|
||
|
Matrix_double *m = InitMatrixWithSize(double, 8, 8, 0.0);
|
||
|
Matrix_double *ident = put_identity_diagonal(m);
|
||
|
|
||
|
for (size_t y = 0; y < m->rows; ++y)
|
||
|
for (size_t x = 0; x < m->cols; ++x)
|
||
|
EXPECT_EQ(ident->data[y]->data[x], x == y ? 1.0 : 0.0);
|
||
|
|
||
|
free_matrix(m);
|
||
|
free_matrix(ident);
|
||
|
}
|
||
|
|
||
|
UTEST(matrix, copy) {
|
||
|
Matrix_double *m = InitMatrixWithSize(double, 8, 8, 0.0);
|
||
|
Matrix_double *ident = put_identity_diagonal(m);
|
||
|
|
||
|
Matrix_double *copy = copy_matrix(ident);
|
||
|
|
||
|
EXPECT_TRUE(matrix_equal(ident, copy));
|
||
|
|
||
|
free_matrix(m);
|
||
|
free_matrix(ident);
|
||
|
free_matrix(copy);
|
||
|
}
|
||
|
|
||
|
UTEST(matrix, m_dot_v) {
|
||
|
Matrix_double *m = InitMatrixWithSize(double, 8, 8, 0.0);
|
||
|
Matrix_double *ident = put_identity_diagonal(m);
|
||
|
|
||
|
Array_double *x = InitArray(double, {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0});
|
||
|
Array_double *dotted = m_dot_v(ident, x);
|
||
|
|
||
|
EXPECT_TRUE(vector_equal(dotted, x));
|
||
|
|
||
|
free_matrix(m);
|
||
|
free_matrix(ident);
|
||
|
free_vector(x);
|
||
|
free_vector(dotted);
|
||
|
}
|
||
|
|
||
|
UTEST(matrix, lu_decomp) {
|
||
|
Matrix_double *m = InitMatrixWithSize(double, 8, 8, 0.0);
|
||
|
for (size_t y = 0; y < m->rows; ++y) {
|
||
|
for (size_t x = 0; x < m->cols; ++x)
|
||
|
m->data[y]->data[x] = x == y ? 5.0 : (5.0 - rand() % 10 + 1);
|
||
|
}
|
||
|
|
||
|
Matrix_double **ul = lu_decomp(m);
|
||
|
Matrix_double *u = ul[0];
|
||
|
Matrix_double *l = ul[1];
|
||
|
for (int y = 0; y < m->rows; y++) {
|
||
|
for (size_t x = 0; x < c_max(y - 1, 0); x++) {
|
||
|
double u_yx = u->data[y]->data[x];
|
||
|
EXPECT_NEAR(u_yx, 0.0, 0.0001);
|
||
|
}
|
||
|
|
||
|
for (size_t x = c_min(m->cols, y + 1); x < m->cols; ++x) {
|
||
|
double l_yx = l->data[y]->data[x];
|
||
|
EXPECT_NEAR(l_yx, 0.0, 0.0001);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
free_matrix(m);
|
||
|
free_matrix(l);
|
||
|
free_matrix(u);
|
||
|
free(ul);
|
||
|
}
|
||
|
|
||
|
UTEST(matrix, solve_matrix) {
|
||
|
Matrix_double *m = InitMatrixWithSize(double, 8, 8, 0.0);
|
||
|
for (size_t y = 0; y < m->rows; ++y) {
|
||
|
for (size_t x = 0; x < m->cols; ++x)
|
||
|
m->data[y]->data[x] = x == y ? 10.0 : (5.0 - rand() % 10 + 1);
|
||
|
}
|
||
|
|
||
|
Array_double *b = InitArray(double, {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0});
|
||
|
Array_double *solution = solve_matrix(m, b);
|
||
|
|
||
|
for (size_t y = 0; y < m->rows; y++) {
|
||
|
double dot = v_dot_v(m->data[y], solution);
|
||
|
EXPECT_NEAR(b->data[y], dot, 0.0001);
|
||
|
}
|
||
|
|
||
|
free_matrix(m);
|
||
|
free_vector(b);
|
||
|
free_vector(solution);
|
||
|
}
|