2023-09-25 12:36:23 -04:00
|
|
|
* Taylor Series Approx.
|
|
|
|
Suppose f has $\infty$ many derivatives near a point a. Then the taylor series is given by
|
|
|
|
|
|
|
|
$f(x) = \Sigma_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n$
|
|
|
|
|
|
|
|
For increment notation we can write
|
|
|
|
|
|
|
|
$f(a + h) = f(a) + f'(a)(a+h - a) + \dots$
|
|
|
|
|
|
|
|
$= \Sigma_{n=0}^{\infty} \frac{f^{(n)}(a)}{h!} (h^n)$
|
|
|
|
|
|
|
|
Consider the approximation
|
|
|
|
|
|
|
|
$e = |f'(a) - \frac{f(a + h) - f(a)}{h}| = |f'(a) - \frac{1}{h}(f(a + h) - f(a))|$
|
|
|
|
|
|
|
|
Substituting...
|
|
|
|
|
|
|
|
$= |f'(a) - \frac{1}{h}((f(a) + f'(a) h + \frac{f''(a)}{2} h^2 + \cdots) - f(a))|$
|
|
|
|
|
|
|
|
$f(a) - f(a) = 0$... and $distribute the h$
|
|
|
|
|
|
|
|
$= |-1/2 f''(a) h + \frac{1}{6}f'''(a)h^2 \cdots|$
|
|
|
|
|
|
|
|
** With Remainder
|
|
|
|
We can determine for some u $f(a + h) = f(a) + f'(a)h + \frac{1}{2}f''(u)h^2$
|
|
|
|
|
|
|
|
and so the error is $e = |f'(a) - \frac{f(a + h) - f(a)}{h}| = |\frac{h}{2}f''(u)|$
|
|
|
|
|
|
|
|
- [https://openstax.org/books/calculus-volume-2/pages/6-3-taylor-and-maclaurin-series]
|
|
|
|
+ > Taylor's Theorem w/ Remainder
|
|
|
|
|
|
|
|
|
|
|
|
** Of Deriviatives
|
|
|
|
|
|
|
|
Again, $f'(a) \approx \frac{f(a+h) - f(a)}{h}$,
|
|
|
|
|
|
|
|
$e = |\frac{1}{2} f''(a) + \frac{1}{3!}h^2 f'''(a) + \cdots$
|
|
|
|
|
2023-10-09 23:08:25 -04:00
|
|
|
$R_2 = \frac{h}{2} f''(\xi)$
|
2023-09-25 12:36:23 -04:00
|
|
|
|
2023-10-09 23:08:25 -04:00
|
|
|
$|\frac{h}{2} f''(\xi)| \leq M h^1$
|
2023-09-25 12:36:23 -04:00
|
|
|
|
2023-10-09 23:08:25 -04:00
|
|
|
$M = \frac{1}{2}|f'(\xi)|$
|
2023-09-25 12:36:23 -04:00
|
|
|
|
|
|
|
*** Another approximation
|
|
|
|
|
|
|
|
$\text{err} = |f'(a) - \frac{f(a) - f(a - h)}{h}|$
|
|
|
|
|
|
|
|
$= f'(a) - \frac{1}{h}(f(a) - (f(a) + f'(a)(a - (a - h)) + \frac{1}{2}f''(a)(a-(a-h))^2 + \cdots))$
|
|
|
|
|
2023-10-09 23:08:25 -04:00
|
|
|
$= |f'(a) - (f'(a) + \frac{1}{2}f''(a)h)|$
|
2023-09-25 12:36:23 -04:00
|
|
|
|