46 lines
909 B
Org Mode
46 lines
909 B
Org Mode
|
* regression
|
||
|
consider the generic problem of fitting a dataset to a linear polynomial
|
||
|
|
||
|
given discrete f: x \rightarrow y
|
||
|
|
||
|
interpolation: y = a + bx
|
||
|
|
||
|
[[1 x_0] [[y_0]
|
||
|
[1 x_1] \cdot [[a] = [y_1]
|
||
|
[1 x_n]] [b]] [y_n]]
|
||
|
|
||
|
consider p \in col(A)
|
||
|
|
||
|
then y = p + q for some q \cdot p = 0
|
||
|
|
||
|
then we can generate n \in col(A) by $Az$ and n must be orthogonal to q as well
|
||
|
|
||
|
(Az)^T \cdot q = 0 = (Az)^T (y - p)
|
||
|
|
||
|
0 = (z^T A^T)(y - Ax)
|
||
|
= z^T (A^T y - A^T A x)
|
||
|
= A^T Ax
|
||
|
= A^T y
|
||
|
|
||
|
|
||
|
A^T A = [[n+1 \Sigma_{n=0}^n x_n]
|
||
|
[\Sigma_{n=0}^n x_n \Sigma_{n=0}^n x_n^2]]
|
||
|
|
||
|
A^T y = [[\Sigma_{n=0}^n y_n]
|
||
|
[\Sigma_{n=0}^n x_n y_n]]
|
||
|
|
||
|
a_11 = n+1
|
||
|
a_12 = \Sigma_{n=0}^n x_n
|
||
|
a_21 = a_12
|
||
|
a_22 = \Sigma_{n=0}^n x_n^2
|
||
|
b_1 = \Sigma_{n=0}^n y_n
|
||
|
b_2 = \Sigma_{n=0}^n x_n y_n
|
||
|
|
||
|
then apply this with:
|
||
|
|
||
|
log(e(h)) \leq log(C) + rlog(h)
|
||
|
|
||
|
* homework 3:
|
||
|
|
||
|
two columns \Rightarrow coefficients for linear regression
|