add least dominant eigenvalue
This commit is contained in:
parent
f50a1c5a4d
commit
2a35f68ac4
@ -76,6 +76,9 @@ extern double fixed_point_secant_bisection_method(double (*f)(double),
|
|||||||
|
|
||||||
extern double dominant_eigenvalue(Matrix_double *m, Array_double *v,
|
extern double dominant_eigenvalue(Matrix_double *m, Array_double *v,
|
||||||
double tolerance, size_t max_iterations);
|
double tolerance, size_t max_iterations);
|
||||||
|
extern double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
|
||||||
|
double tolerance,
|
||||||
|
size_t max_iterations);
|
||||||
extern Matrix_double *leslie_matrix(Array_double *age_class_surivor_ratio,
|
extern Matrix_double *leslie_matrix(Array_double *age_class_surivor_ratio,
|
||||||
Array_double *age_class_offspring);
|
Array_double *age_class_offspring);
|
||||||
#endif // LIZFCM_H
|
#endif // LIZFCM_H
|
||||||
|
35
src/eigen.c
35
src/eigen.c
@ -48,3 +48,38 @@ double dominant_eigenvalue(Matrix_double *m, Array_double *v, double tolerance,
|
|||||||
|
|
||||||
return lambda;
|
return lambda;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
|
||||||
|
double tolerance, size_t max_iterations) {
|
||||||
|
assert(m->rows == m->cols);
|
||||||
|
assert(m->rows == v->size);
|
||||||
|
|
||||||
|
double shift = 0.0;
|
||||||
|
Matrix_double *m_c = copy_matrix(m);
|
||||||
|
for (size_t y = 0; y < m_c->rows; ++y)
|
||||||
|
m_c->data[y]->data[y] = m_c->data[y]->data[y] - shift;
|
||||||
|
|
||||||
|
double error = tolerance;
|
||||||
|
size_t iter = max_iterations;
|
||||||
|
double lambda = shift;
|
||||||
|
Array_double *eigenvector_1 = copy_vector(v);
|
||||||
|
|
||||||
|
while (error >= tolerance && (--iter) > 0) {
|
||||||
|
Array_double *eigenvector_2 = solve_matrix_lu_bsubst(m_c, eigenvector_1);
|
||||||
|
Array_double *normalized_eigenvector_2 =
|
||||||
|
scale_v(eigenvector_2, 1.0 / linf_norm(eigenvector_2));
|
||||||
|
free_vector(eigenvector_2);
|
||||||
|
eigenvector_2 = normalized_eigenvector_2;
|
||||||
|
|
||||||
|
Array_double *mx = m_dot_v(m, eigenvector_2);
|
||||||
|
double new_lambda =
|
||||||
|
v_dot_v(mx, eigenvector_2) / v_dot_v(eigenvector_2, eigenvector_2);
|
||||||
|
|
||||||
|
error = fabs(new_lambda - lambda);
|
||||||
|
lambda = new_lambda;
|
||||||
|
free_vector(eigenvector_1);
|
||||||
|
eigenvector_1 = eigenvector_2;
|
||||||
|
}
|
||||||
|
|
||||||
|
return lambda;
|
||||||
|
}
|
||||||
|
@ -43,6 +43,30 @@ UTEST(eigen, leslie_matrix_dominant_eigenvalue) {
|
|||||||
free_matrix(leslie);
|
free_matrix(leslie);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
UTEST(eigen, least_dominant_eigenvalue) {
|
||||||
|
|
||||||
|
Matrix_double *m = InitMatrixWithSize(double, 3, 3, 0.0);
|
||||||
|
m->data[0]->data[0] = 2.0;
|
||||||
|
m->data[0]->data[1] = 2.0;
|
||||||
|
m->data[0]->data[2] = 4.0;
|
||||||
|
m->data[1]->data[0] = 1.0;
|
||||||
|
m->data[1]->data[1] = 4.0;
|
||||||
|
m->data[1]->data[2] = 7.0;
|
||||||
|
m->data[2]->data[1] = 2.0;
|
||||||
|
m->data[2]->data[2] = 6.0;
|
||||||
|
|
||||||
|
double expected_least_dominant_eigenvalue = 0.87689; // 5 - sqrt(17)
|
||||||
|
double tolerance = 0.0001;
|
||||||
|
uint64_t max_iterations = 64;
|
||||||
|
|
||||||
|
Array_double *v_guess = InitArrayWithSize(double, 3, 2.0);
|
||||||
|
double approx_least_dominant_eigenvalue =
|
||||||
|
least_dominant_eigenvalue(m, v_guess, tolerance, max_iterations);
|
||||||
|
|
||||||
|
EXPECT_NEAR(expected_least_dominant_eigenvalue,
|
||||||
|
approx_least_dominant_eigenvalue, tolerance);
|
||||||
|
}
|
||||||
|
|
||||||
UTEST(eigen, dominant_eigenvalue) {
|
UTEST(eigen, dominant_eigenvalue) {
|
||||||
Matrix_double *m = InitMatrixWithSize(double, 2, 2, 0.0);
|
Matrix_double *m = InitMatrixWithSize(double, 2, 2, 0.0);
|
||||||
m->data[0]->data[0] = 2.0;
|
m->data[0]->data[0] = 2.0;
|
||||||
|
Loading…
Reference in New Issue
Block a user