hw 5
This commit is contained in:
parent
81979f09cf
commit
562ba9a9b6
@ -5,7 +5,7 @@
|
||||
#+STARTUP: entitiespretty fold inlineimages
|
||||
|
||||
* Design
|
||||
The LIZFCM static library (at [[https://github.com/Simponic/math-4610][[https://github.com/Simponic/math-4610]] is a successor to my
|
||||
The LIZFCM static library (at [[https://github.com/Simponic/math-4610]]) is a successor to my
|
||||
attempt at writing codes for the Fundamentals of Computational Mathematics course in Common
|
||||
Lisp, but the effort required to meet the requirement of creating a static library became
|
||||
too difficult to integrate outside of the ~ASDF~ solution that Common Lisp already brings
|
||||
@ -14,13 +14,14 @@ to the table.
|
||||
All of the work established in ~deprecated-cl~ has been painstakingly translated into
|
||||
the C programming language. I have a couple tenets for its design:
|
||||
|
||||
+ Implemntations of routines should all be done immutably in respect to arguments.
|
||||
+ Implementations of routines should all be done immutably in respect to arguments.
|
||||
+ Functional programming is good (it's... rough in C though).
|
||||
+ Routines are separated into "module" c files, and not individual files per function.
|
||||
+ Routines are separated into "modules" that follow a form of separation of concerns
|
||||
in files, and not individual files per function.
|
||||
|
||||
* Compilation
|
||||
A provided ~Makefile~ is added for convencience. It has been tested on an M1 machine running MacOS as
|
||||
well as Arch Linux.
|
||||
A provided ~Makefile~ is added for convencience. It has been tested on an ~arm~-based M1 machine running
|
||||
MacOS as well as ~x86~ Arch Linux.
|
||||
|
||||
1. ~cd~ into the root of the repo
|
||||
2. ~make~
|
||||
@ -317,6 +318,39 @@ void free_vector(Array_double *v) {
|
||||
}
|
||||
#+END_SRC
|
||||
|
||||
*** ~add_element~
|
||||
+ Author: Elizabeth Hunt
|
||||
+ Name: ~add_element~
|
||||
+ Location: ~src/vector.c~
|
||||
+ Input: a pointer to an ~Array_double~
|
||||
+ Output: a new ~Array_double~ with element ~x~ appended.
|
||||
|
||||
#+BEGIN_SRC c
|
||||
Array_double *add_element(Array_double *v, double x) {
|
||||
Array_double *pushed = InitArrayWithSize(double, v->size + 1, 0.0);
|
||||
for (size_t i = 0; i < v->size; ++i)
|
||||
pushed->data[i] = v->data[i];
|
||||
pushed->data[v->size] = x;
|
||||
return pushed;
|
||||
}
|
||||
#+END_SRC
|
||||
|
||||
*** ~slice_element~
|
||||
+ Author: Elizabeth Hunt
|
||||
+ Name: ~slice_element~
|
||||
+ Location: ~src/vector.c~
|
||||
+ Input: a pointer to an ~Array_double~
|
||||
+ Output: a new ~Array_double~ with element ~x~ sliced.
|
||||
|
||||
#+BEGIN_SRC c
|
||||
Array_double *slice_element(Array_double *v, size_t x) {
|
||||
Array_double *sliced = InitArrayWithSize(double, v->size - 1, 0.0);
|
||||
for (size_t i = 0; i < v->size - 1; ++i)
|
||||
sliced->data[i] = i >= x ? v->data[i + 1] : v->data[i];
|
||||
return sliced;
|
||||
}
|
||||
#+END_SRC
|
||||
|
||||
*** ~copy_vector~
|
||||
+ Author: Elizabeth Hunt
|
||||
+ Name: ~copy_vector~
|
||||
@ -370,25 +404,24 @@ void format_vector_into(Array_double *v, char *s) {
|
||||
matrix $L$, $U$, respectively such that $LU = m$.
|
||||
+ Output: a pointer to the location in memory in which two ~Matrix_double~'s reside: the first
|
||||
representing $L$, the second, $U$.
|
||||
+ Errors: Exits and throws a status code of ~-1~ when encountering a matrix that cannot be
|
||||
+ Errors: Fails assertions when encountering a matrix that cannot be
|
||||
decomposed
|
||||
|
||||
#+BEGIN_SRC c
|
||||
Matrix_double **lu_decomp(Matrix_double *m) {
|
||||
Matrix_double **lu_decomp(Matrix_double *m) {
|
||||
assert(m->cols == m->rows);
|
||||
|
||||
Matrix_double *u = copy_matrix(m);
|
||||
Matrix_double *l_empt = InitMatrixWithSize(double, m->rows, m->cols, 0.0);
|
||||
Matrix_double *l = put_identity_diagonal(l_empt);
|
||||
free(l_empt);
|
||||
|
||||
free_matrix(l_empt);
|
||||
|
||||
Matrix_double **u_l = malloc(sizeof(Matrix_double *) * 2);
|
||||
|
||||
for (size_t y = 0; y < m->rows; y++) {
|
||||
if (u->data[y]->data[y] == 0) {
|
||||
printf("ERROR: a pivot is zero in given matrix\n");
|
||||
exit(-1);
|
||||
assert(false);
|
||||
}
|
||||
}
|
||||
|
||||
@ -399,7 +432,7 @@ void format_vector_into(Array_double *v, char *s) {
|
||||
|
||||
if (denom == 0) {
|
||||
printf("ERROR: non-factorable matrix\n");
|
||||
exit(-1);
|
||||
assert(false);
|
||||
}
|
||||
|
||||
double factor = -(u->data[y]->data[x] / denom);
|
||||
@ -418,7 +451,7 @@ void format_vector_into(Array_double *v, char *s) {
|
||||
u_l[0] = u;
|
||||
u_l[1] = l;
|
||||
return u_l;
|
||||
}
|
||||
}
|
||||
#+END_SRC
|
||||
*** ~bsubst~
|
||||
+ Author: Elizabeth Hunt
|
||||
@ -467,7 +500,7 @@ Array_double *fsubst(Matrix_double *l, Array_double *b) {
|
||||
}
|
||||
#+END_SRC
|
||||
|
||||
*** ~solve_matrix~
|
||||
*** ~solve_matrix_lu_bsubst~
|
||||
+ Author: Elizabeth Hunt
|
||||
+ Location: ~src/matrix.c~
|
||||
+ Input: a pointer to a ~Matrix_double~ $m$ and a pointer to an ~Array_double~ $b$
|
||||
@ -480,7 +513,7 @@ Here we make use of forward substitution to first solve $Ly = b$ given $L$ as th
|
||||
Then, $LUx = b$, thus $x$ is a solution.
|
||||
|
||||
#+BEGIN_SRC c
|
||||
Array_double *solve_matrix(Matrix_double *m, Array_double *b) {
|
||||
Array_double *solve_matrix_lu_bsubst(Matrix_double *m, Array_double *b) {
|
||||
assert(b->size == m->rows);
|
||||
assert(m->rows == m->cols);
|
||||
|
||||
@ -495,11 +528,97 @@ Array_double *solve_matrix(Matrix_double *m, Array_double *b) {
|
||||
|
||||
free_matrix(u);
|
||||
free_matrix(l);
|
||||
free(u_l);
|
||||
|
||||
return x;
|
||||
}
|
||||
#+END_SRC
|
||||
|
||||
*** ~gaussian_elimination~
|
||||
+ Author: Elizabeth Hunt
|
||||
+ Location: ~src/matrix.c~
|
||||
+ Input: a pointer to a ~Matrix_double~ $m$
|
||||
+ Output: a pointer to a copy of $m$ in reduced echelon form
|
||||
|
||||
This works by finding the row with a maximum value in the column $k$. Then, it uses that as a pivot, and
|
||||
applying reduction to all other rows. The general idea is available at [[https://en.wikipedia.org/wiki/Gaussian_elimination]].
|
||||
|
||||
#+BEGIN_SRC c
|
||||
Matrix_double *gaussian_elimination(Matrix_double *m) {
|
||||
uint64_t h = 0;
|
||||
uint64_t k = 0;
|
||||
|
||||
Matrix_double *m_cp = copy_matrix(m);
|
||||
|
||||
while (h < m_cp->rows && k < m_cp->cols) {
|
||||
uint64_t max_row = 0;
|
||||
double total_max = 0.0;
|
||||
|
||||
for (uint64_t row = h; row < m_cp->rows; row++) {
|
||||
double this_max = c_max(fabs(m_cp->data[row]->data[k]), total_max);
|
||||
if (c_max(this_max, total_max) == this_max) {
|
||||
max_row = row;
|
||||
}
|
||||
}
|
||||
|
||||
if (max_row == 0) {
|
||||
k++;
|
||||
continue;
|
||||
}
|
||||
|
||||
Array_double *swp = m_cp->data[max_row];
|
||||
m_cp->data[max_row] = m_cp->data[h];
|
||||
m_cp->data[h] = swp;
|
||||
|
||||
for (uint64_t row = h + 1; row < m_cp->rows; row++) {
|
||||
double factor = m_cp->data[row]->data[k] / m_cp->data[h]->data[k];
|
||||
m_cp->data[row]->data[k] = 0.0;
|
||||
|
||||
for (uint64_t col = k + 1; col < m_cp->cols; col++) {
|
||||
m_cp->data[row]->data[col] -= m_cp->data[h]->data[col] * factor;
|
||||
}
|
||||
}
|
||||
|
||||
h++;
|
||||
k++;
|
||||
}
|
||||
|
||||
return m_cp;
|
||||
}
|
||||
#+END_SRC
|
||||
|
||||
*** ~solve_matrix_gaussian~
|
||||
+ Author: Elizabeth Hunt
|
||||
+ Location: ~src/matrix.c~
|
||||
+ Input: a pointer to a ~Matrix_double~ $m$ and a target ~Array_double~ $b$
|
||||
+ Output: a pointer to a vector $x$ being the solution to the equation $mx = b$
|
||||
|
||||
We first perform ~gaussian_elimination~ after augmenting $m$ and $b$. Then, as $m$ is in reduced echelon form, it's an upper
|
||||
triangular matrix, so we can perform back substitution to compute $x$.
|
||||
|
||||
#+BEGIN_SRC c
|
||||
Array_double *solve_matrix_gaussian(Matrix_double *m, Array_double *b) {
|
||||
assert(b->size == m->rows);
|
||||
assert(m->rows == m->cols);
|
||||
|
||||
Matrix_double *m_augment_b = add_column(m, b);
|
||||
Matrix_double *eliminated = gaussian_elimination(m_augment_b);
|
||||
|
||||
Array_double *b_gauss = col_v(eliminated, m->cols);
|
||||
Matrix_double *u = slice_column(eliminated, m->rows);
|
||||
|
||||
Array_double *solution = bsubst(u, b_gauss);
|
||||
|
||||
free_matrix(m_augment_b);
|
||||
free_matrix(eliminated);
|
||||
free_matrix(u);
|
||||
free_vector(b_gauss);
|
||||
|
||||
return solution;
|
||||
}
|
||||
#+END_SRC
|
||||
|
||||
|
||||
*** ~m_dot_v~
|
||||
+ Author: Elizabeth Hunt
|
||||
+ Location: ~src/matrix.c~
|
||||
@ -535,6 +654,48 @@ Matrix_double *put_identity_diagonal(Matrix_double *m) {
|
||||
}
|
||||
#+END_SRC
|
||||
|
||||
*** ~slice_column~
|
||||
+ Author: Elizabeth Hunt
|
||||
+ Location: ~src/matrix.c~
|
||||
+ Input: a pointer to a ~Matrix_double~
|
||||
+ Output: a pointer to a copy of the given ~Matrix_double~ with column at ~x~ sliced
|
||||
|
||||
#+BEGIN_SRC c
|
||||
Matrix_double *slice_column(Matrix_double *m, size_t x) {
|
||||
Matrix_double *sliced = copy_matrix(m);
|
||||
|
||||
for (size_t row = 0; row < m->rows; row++) {
|
||||
Array_double *old_row = sliced->data[row];
|
||||
sliced->data[row] = slice_element(old_row, x);
|
||||
free_vector(old_row);
|
||||
}
|
||||
sliced->cols--;
|
||||
|
||||
return sliced;
|
||||
}
|
||||
#+END_SRC
|
||||
|
||||
*** ~add_column~
|
||||
+ Author: Elizabet Hunt
|
||||
+ Location: ~src/matrix.c~
|
||||
+ Input: a pointer to a ~Matrix_double~ and a new vector representing the appended column ~x~
|
||||
+ Output: a pointer to a copy of the given ~Matrix_double~ with a new column ~x~
|
||||
|
||||
#+BEGIN_SRC c
|
||||
Matrix_double *add_column(Matrix_double *m, Array_double *v) {
|
||||
Matrix_double *pushed = copy_matrix(m);
|
||||
|
||||
for (size_t row = 0; row < m->rows; row++) {
|
||||
Array_double *old_row = pushed->data[row];
|
||||
pushed->data[row] = add_element(old_row, v->data[row]);
|
||||
free_vector(old_row);
|
||||
}
|
||||
|
||||
pushed->cols++;
|
||||
return pushed;
|
||||
}
|
||||
#+END_SRC
|
||||
|
||||
*** ~copy_matrix~
|
||||
+ Author: Elizabeth Hunt
|
||||
+ Location: ~src/matrix.c~
|
||||
|
Binary file not shown.
@ -1,4 +1,4 @@
|
||||
% Created 2023-10-18 Wed 13:06
|
||||
% Created 2023-10-30 Mon 09:44
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass[11pt]{article}
|
||||
\usepackage[utf8]{inputenc}
|
||||
@ -31,8 +31,8 @@
|
||||
\setlength\parindent{0pt}
|
||||
|
||||
\section{Design}
|
||||
\label{sec:org7204e7c}
|
||||
The LIZFCM static library (at \href{https://github.com/Simponic/math-4610}{[https://github.com/Simponic/math-4610} is a successor to my
|
||||
\label{sec:org7f9c526}
|
||||
The LIZFCM static library (at \url{https://github.com/Simponic/math-4610}) is a successor to my
|
||||
attempt at writing codes for the Fundamentals of Computational Mathematics course in Common
|
||||
Lisp, but the effort required to meet the requirement of creating a static library became
|
||||
too difficult to integrate outside of the \texttt{ASDF} solution that Common Lisp already brings
|
||||
@ -42,13 +42,13 @@ All of the work established in \texttt{deprecated-cl} has been painstakingly tra
|
||||
the C programming language. I have a couple tenets for its design:
|
||||
|
||||
\begin{itemize}
|
||||
\item Implemntations of routines should all be done immutably in respect to arguments.
|
||||
\item Implementations of routines should all be done immutably in respect to arguments.
|
||||
\item Functional programming is good (it's\ldots{} rough in C though).
|
||||
\item Routines are separated into "module" c files, and not individual files per function.
|
||||
\end{itemize}
|
||||
|
||||
\section{Compilation}
|
||||
\label{sec:org16cc307}
|
||||
\label{sec:org911a41e}
|
||||
A provided \texttt{Makefile} is added for convencience. It has been tested on an M1 machine running MacOS as
|
||||
well as Arch Linux.
|
||||
|
||||
@ -74,11 +74,11 @@ Which is then bundled into a static library in \texttt{lib/lizfcm.a} which can b
|
||||
in the standard method.
|
||||
|
||||
\section{The LIZFCM API}
|
||||
\label{sec:org832532a}
|
||||
\label{sec:orgd74cd2d}
|
||||
\subsection{Simple Routines}
|
||||
\label{sec:org540b602}
|
||||
\label{sec:org66bba13}
|
||||
\subsubsection{\texttt{smaceps}}
|
||||
\label{sec:org4d03b6e}
|
||||
\label{sec:orgeae9531}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Name: \texttt{smaceps}
|
||||
@ -104,7 +104,7 @@ float smaceps() {
|
||||
\end{verbatim}
|
||||
|
||||
\subsubsection{\texttt{dmaceps}}
|
||||
\label{sec:org2603bfc}
|
||||
\label{sec:org237c904}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Name: \texttt{dmaceps}
|
||||
@ -130,9 +130,9 @@ double dmaceps() {
|
||||
\end{verbatim}
|
||||
|
||||
\subsection{Derivative Routines}
|
||||
\label{sec:org95c28e9}
|
||||
\label{sec:org9cf9027}
|
||||
\subsubsection{\texttt{central\_derivative\_at}}
|
||||
\label{sec:org950de62}
|
||||
\label{sec:org1fcd333}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Name: \texttt{central\_derivative\_at}
|
||||
@ -163,7 +163,7 @@ double central_derivative_at(double (*f)(double), double a, double h) {
|
||||
\end{verbatim}
|
||||
|
||||
\subsubsection{\texttt{forward\_derivative\_at}}
|
||||
\label{sec:org832eda6}
|
||||
\label{sec:org6a768fc}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Name: \texttt{forward\_derivative\_at}
|
||||
@ -194,7 +194,7 @@ double forward_derivative_at(double (*f)(double), double a, double h) {
|
||||
\end{verbatim}
|
||||
|
||||
\subsubsection{\texttt{backward\_derivative\_at}}
|
||||
\label{sec:org591836d}
|
||||
\label{sec:org610ce76}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Name: \texttt{backward\_derivative\_at}
|
||||
@ -225,9 +225,9 @@ double backward_derivative_at(double (*f)(double), double a, double h) {
|
||||
\end{verbatim}
|
||||
|
||||
\subsection{Vector Routines}
|
||||
\label{sec:org5254fe4}
|
||||
\label{sec:orgfd176e6}
|
||||
\subsubsection{Vector Arithmetic: \texttt{add\_v, minus\_v}}
|
||||
\label{sec:orgf802d61}
|
||||
\label{sec:org2dbc55f}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Name(s): \texttt{add\_v}, \texttt{minus\_v}
|
||||
@ -258,7 +258,7 @@ Array_double *minus_v(Array_double *v1, Array_double *v2) {
|
||||
\end{verbatim}
|
||||
|
||||
\subsubsection{Norms: \texttt{l1\_norm}, \texttt{l2\_norm}, \texttt{linf\_norm}}
|
||||
\label{sec:orgc56e22d}
|
||||
\label{sec:org53a2ffc}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Name(s): \texttt{l1\_norm}, \texttt{l2\_norm}, \texttt{linf\_norm}
|
||||
@ -292,7 +292,7 @@ double linf_norm(Array_double *v) {
|
||||
\end{verbatim}
|
||||
|
||||
\subsubsection{\texttt{vector\_distance}}
|
||||
\label{sec:orgb54922f}
|
||||
\label{sec:org1fb3f8c}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Name: \texttt{vector\_distance}
|
||||
@ -313,7 +313,7 @@ double vector_distance(Array_double *v1, Array_double *v2,
|
||||
\end{verbatim}
|
||||
|
||||
\subsubsection{Distances: \texttt{l1\_distance}, \texttt{l2\_distance}, \texttt{linf\_distance}}
|
||||
\label{sec:orgf22f8e0}
|
||||
\label{sec:org4a25a94}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Name(s): \texttt{l1\_distance}, \texttt{l2\_distance}, \texttt{linf\_distance}
|
||||
@ -339,7 +339,7 @@ double linf_distance(Array_double *v1, Array_double *v2) {
|
||||
\end{verbatim}
|
||||
|
||||
\subsubsection{\texttt{sum\_v}}
|
||||
\label{sec:org4593341}
|
||||
\label{sec:org035a547}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Name: \texttt{sum\_v}
|
||||
@ -359,7 +359,7 @@ double sum_v(Array_double *v) {
|
||||
|
||||
|
||||
\subsubsection{\texttt{scale\_v}}
|
||||
\label{sec:org3123f61}
|
||||
\label{sec:org12b0853}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Name: \texttt{scale\_v}
|
||||
@ -378,7 +378,7 @@ Array_double *scale_v(Array_double *v, double m) {
|
||||
\end{verbatim}
|
||||
|
||||
\subsubsection{\texttt{free\_vector}}
|
||||
\label{sec:org983efcf}
|
||||
\label{sec:org70ba90c}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Name: \texttt{free\_vector}
|
||||
@ -396,7 +396,7 @@ void free_vector(Array_double *v) {
|
||||
\end{verbatim}
|
||||
|
||||
\subsubsection{\texttt{copy\_vector}}
|
||||
\label{sec:orgde05d32}
|
||||
\label{sec:org57afc74}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Name: \texttt{copy\_vector}
|
||||
@ -416,7 +416,7 @@ Array_double *copy_vector(Array_double *v) {
|
||||
\end{verbatim}
|
||||
|
||||
\subsubsection{\texttt{format\_vector\_into}}
|
||||
\label{sec:org2e779f3}
|
||||
\label{sec:orgc346c3c}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Name: \texttt{format\_vector\_into}
|
||||
@ -446,9 +446,9 @@ void format_vector_into(Array_double *v, char *s) {
|
||||
\end{verbatim}
|
||||
|
||||
\subsection{Matrix Routines}
|
||||
\label{sec:org2354147}
|
||||
\label{sec:org3b053ab}
|
||||
\subsubsection{\texttt{lu\_decomp}}
|
||||
\label{sec:org3690faa}
|
||||
\label{sec:org5553968}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Name: \texttt{lu\_decomp}
|
||||
@ -509,7 +509,7 @@ Matrix_double **lu_decomp(Matrix_double *m) {
|
||||
}
|
||||
\end{verbatim}
|
||||
\subsubsection{\texttt{bsubst}}
|
||||
\label{sec:orgdeba296}
|
||||
\label{sec:org253efdc}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Name: \texttt{bsubst}
|
||||
@ -534,7 +534,7 @@ Array_double *bsubst(Matrix_double *u, Array_double *b) {
|
||||
}
|
||||
\end{verbatim}
|
||||
\subsubsection{\texttt{fsubst}}
|
||||
\label{sec:org60d3435}
|
||||
\label{sec:orge0c7bc6}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Name: \texttt{fsubst}
|
||||
@ -562,7 +562,7 @@ Array_double *fsubst(Matrix_double *l, Array_double *b) {
|
||||
\end{verbatim}
|
||||
|
||||
\subsubsection{\texttt{solve\_matrix}}
|
||||
\label{sec:org914121f}
|
||||
\label{sec:orgbcd445a}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Location: \texttt{src/matrix.c}
|
||||
@ -598,7 +598,7 @@ Array_double *solve_matrix(Matrix_double *m, Array_double *b) {
|
||||
\end{verbatim}
|
||||
|
||||
\subsubsection{\texttt{m\_dot\_v}}
|
||||
\label{sec:orgae0f4c9}
|
||||
\label{sec:orga9b1f68}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Location: \texttt{src/matrix.c}
|
||||
@ -620,7 +620,7 @@ Array_double *m_dot_v(Matrix_double *m, Array_double *v) {
|
||||
\end{verbatim}
|
||||
|
||||
\subsubsection{\texttt{put\_identity\_diagonal}}
|
||||
\label{sec:org6d84f6a}
|
||||
\label{sec:org33ead5e}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Location: \texttt{src/matrix.c}
|
||||
@ -639,7 +639,7 @@ Matrix_double *put_identity_diagonal(Matrix_double *m) {
|
||||
\end{verbatim}
|
||||
|
||||
\subsubsection{\texttt{copy\_matrix}}
|
||||
\label{sec:orge750c56}
|
||||
\label{sec:org34b3f5b}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Location: \texttt{src/matrix.c}
|
||||
@ -659,7 +659,7 @@ Matrix_double *copy_matrix(Matrix_double *m) {
|
||||
\end{verbatim}
|
||||
|
||||
\subsubsection{\texttt{free\_matrix}}
|
||||
\label{sec:org4ebcf85}
|
||||
\label{sec:org9c91101}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Location: \texttt{src/matrix.c}
|
||||
@ -678,7 +678,7 @@ void free_matrix(Matrix_double *m) {
|
||||
\end{verbatim}
|
||||
|
||||
\subsubsection{\texttt{format\_matrix\_into}}
|
||||
\label{sec:org308ee0d}
|
||||
\label{sec:org51f3e27}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Name: \texttt{format\_matrix\_into}
|
||||
@ -705,9 +705,9 @@ void format_matrix_into(Matrix_double *m, char *s) {
|
||||
}
|
||||
\end{verbatim}
|
||||
\subsection{Root Finding Methods}
|
||||
\label{sec:org8981156}
|
||||
\label{sec:org0e83d47}
|
||||
\subsubsection{\texttt{find\_ivt\_range}}
|
||||
\label{sec:orga5835b0}
|
||||
\label{sec:org3e4e34e}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Name: \texttt{find\_ivt\_range}
|
||||
@ -737,7 +737,7 @@ double *find_ivt_range(double (*f)(double), double start_x, double delta,
|
||||
}
|
||||
\end{verbatim}
|
||||
\subsubsection{\texttt{bisect\_find\_root}}
|
||||
\label{sec:orgb118fc7}
|
||||
\label{sec:org48f0967}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Name(s): \texttt{bisect\_find\_root}
|
||||
@ -765,7 +765,7 @@ double bisect_find_root(double (*f)(double), double a, double b,
|
||||
}
|
||||
\end{verbatim}
|
||||
\subsubsection{\texttt{bisect\_find\_root\_with\_error\_assumption}}
|
||||
\label{sec:orgf5124e7}
|
||||
\label{sec:org15e3c2d}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Name: \texttt{bisect\_find\_root\_with\_error\_assumption}
|
||||
@ -789,9 +789,9 @@ double bisect_find_root_with_error_assumption(double (*f)(double), double a,
|
||||
\end{verbatim}
|
||||
|
||||
\subsection{Linear Routines}
|
||||
\label{sec:org6f4fce5}
|
||||
\label{sec:org98cb54b}
|
||||
\subsubsection{\texttt{least\_squares\_lin\_reg}}
|
||||
\label{sec:orge810f5f}
|
||||
\label{sec:org0c0c5d7}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Name: \texttt{least\_squares\_lin\_reg}
|
||||
@ -821,12 +821,12 @@ Line *least_squares_lin_reg(Array_double *x, Array_double *y) {
|
||||
}
|
||||
\end{verbatim}
|
||||
\subsection{Appendix / Miscellaneous}
|
||||
\label{sec:org85d2eae}
|
||||
\label{sec:orge34af18}
|
||||
\subsubsection{Data Types}
|
||||
\label{sec:org198ca2d}
|
||||
\label{sec:org0f2f877}
|
||||
\begin{enumerate}
|
||||
\item \texttt{Line}
|
||||
\label{sec:org1866885}
|
||||
\label{sec:org3f27166}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Location: \texttt{inc/types.h}
|
||||
@ -839,7 +839,7 @@ typedef struct Line {
|
||||
} Line;
|
||||
\end{verbatim}
|
||||
\item The \texttt{Array\_<type>} and \texttt{Matrix\_<type>}
|
||||
\label{sec:org4a1c956}
|
||||
\label{sec:org83fc1f3}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Location: \texttt{inc/types.h}
|
||||
@ -871,10 +871,10 @@ typedef struct {
|
||||
\end{enumerate}
|
||||
|
||||
\subsubsection{Macros}
|
||||
\label{sec:org1976330}
|
||||
\label{sec:org2bf9bf0}
|
||||
\begin{enumerate}
|
||||
\item \texttt{c\_max} and \texttt{c\_min}
|
||||
\label{sec:org208b148}
|
||||
\label{sec:orgcaa569e}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Location: \texttt{inc/macros.h}
|
||||
@ -888,7 +888,7 @@ typedef struct {
|
||||
\end{verbatim}
|
||||
|
||||
\item \texttt{InitArray}
|
||||
\label{sec:orgccc4528}
|
||||
\label{sec:org5805999}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Location: \texttt{inc/macros.h}
|
||||
@ -909,7 +909,7 @@ typedef struct {
|
||||
\end{verbatim}
|
||||
|
||||
\item \texttt{InitArrayWithSize}
|
||||
\label{sec:org7e87550}
|
||||
\label{sec:org264d6b7}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Location: \texttt{inc/macros.h}
|
||||
@ -930,7 +930,7 @@ typedef struct {
|
||||
\end{verbatim}
|
||||
|
||||
\item \texttt{InitMatrixWithSize}
|
||||
\label{sec:orge6ec2b1}
|
||||
\label{sec:org310d41a}
|
||||
\begin{itemize}
|
||||
\item Author: Elizabeth Hunt
|
||||
\item Location: \texttt{inc/macros.h}
|
||||
|
59
homeworks/hw-5.org
Normal file
59
homeworks/hw-5.org
Normal file
@ -0,0 +1,59 @@
|
||||
#+TITLE: Homework 5
|
||||
#+AUTHOR: Elizabeth Hunt
|
||||
#+LATEX_HEADER: \notindent \notag \usepackage{amsmath} \usepackage[a4paper,margin=1in,portrait]{geometry}
|
||||
#+LATEX: \setlength\parindent{0pt}
|
||||
#+OPTIONS: toc:nil
|
||||
|
||||
* Question One
|
||||
See LIZFCM \rightarrow Matrix Routines \rightarrow ~lu decomp~ & ~bsubst~.
|
||||
|
||||
The test ~UTEST(matrix, lu_decomp)~ is a unit test for the ~lu_decomp~ routine,
|
||||
and ~UTEST(matrix, bsubst)~ verifies back substitution on an upper triangular
|
||||
3 \times 3 matrix with a known solution that can be verified manually.
|
||||
|
||||
Both can be found in ~tests/matrix.t.c~.
|
||||
|
||||
* Question Two
|
||||
Unless the following are met, the resulting solution will be garbage.
|
||||
|
||||
1. The matrix $U$ must be not be singular.
|
||||
2. $U$ must be square (or it will fail the ~assert~).
|
||||
3. The system created by $Ux = b$ must be consistent.
|
||||
4. $U$ is in (obviously) upper-triangular form.
|
||||
|
||||
Thus, the actual calculation performing the $LU$ decomposition
|
||||
(in ~lu_decomp~) does a sanity
|
||||
check for 1-3 will fail an assert, should a point along the diagonal (pivot) be
|
||||
zero, or the matrix be non-factorable.
|
||||
|
||||
* Question Three
|
||||
See LIZFCM \rightarrow Matrix Routines \rightarrow ~fsubst~.
|
||||
|
||||
~UTEST(matrix, fsubst)~ verifies forward substitution on a lower triangular 3 \times 3
|
||||
matrix with a known solution that can be verified manually.
|
||||
|
||||
* Question Four
|
||||
|
||||
See LIZFCM \rightarrow Matrix Routines \rightarrow ~gaussian_elimination~ and ~solve_gaussian_elimination~.
|
||||
|
||||
* Question Five
|
||||
See LIZFCM \rightarrow Matrix Routines \rightarrow ~m_dot_v~, and the ~UTEST(matrix, m_dot_v)~ in
|
||||
~tests/matrix.t.c~.
|
||||
|
||||
* Question Six
|
||||
See ~UTEST(matrix, solve_gaussian_elimination)~ in ~tests/matrix.t.c~, which generates a diagonally dominant 10 \times 10 matrix
|
||||
and shows that the solution is consistent with the initial matrix, according to the steps given. Then,
|
||||
we do a dot product between each row of the diagonally dominant matrix and the solution vector to ensure
|
||||
it is near equivalent to the input vector.
|
||||
|
||||
* Question Seven
|
||||
See ~UTEST(matrix, solve_matrix_lu_bsubst)~ which does the same test in Question Six with the solution according to
|
||||
~solve_matrix_lu_bsubst~ as shown in the Software Manual.
|
||||
|
||||
* Question Eight
|
||||
No, since the time complexity for Gaussian Elimination is always less than that of the LU factorization solution by $O(n^2)$ operations
|
||||
(in LU factorization we perform both backwards and forwards substitutions proceeding the LU decomp, in Gaussian Elimination we only need
|
||||
back substitution).
|
||||
|
||||
* Question Nine, Ten
|
||||
See LIZFCM Software manual and shared library in ~dist~ after compiling.
|
BIN
homeworks/hw-5.pdf
Normal file
BIN
homeworks/hw-5.pdf
Normal file
Binary file not shown.
95
homeworks/hw-5.tex
Normal file
95
homeworks/hw-5.tex
Normal file
@ -0,0 +1,95 @@
|
||||
% Created 2023-10-30 Mon 19:05
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass[11pt]{article}
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{longtable}
|
||||
\usepackage{wrapfig}
|
||||
\usepackage{rotating}
|
||||
\usepackage[normalem]{ulem}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{capt-of}
|
||||
\usepackage{hyperref}
|
||||
\notindent \notag \usepackage{amsmath} \usepackage[a4paper,margin=1in,portrait]{geometry}
|
||||
\author{Elizabeth Hunt}
|
||||
\date{\today}
|
||||
\title{Homework 5}
|
||||
\hypersetup{
|
||||
pdfauthor={Elizabeth Hunt},
|
||||
pdftitle={Homework 5},
|
||||
pdfkeywords={},
|
||||
pdfsubject={},
|
||||
pdfcreator={Emacs 28.2 (Org mode 9.7-pre)},
|
||||
pdflang={English}}
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
\setlength\parindent{0pt}
|
||||
|
||||
\section{Question One}
|
||||
\label{sec:org88abf18}
|
||||
See LIZFCM \(\rightarrow\) Matrix Routines \(\rightarrow\) \texttt{lu decomp} \& \texttt{bsubst}.
|
||||
|
||||
The test \texttt{UTEST(matrix, lu\_decomp)} is a unit test for the \texttt{lu\_decomp} routine,
|
||||
and \texttt{UTEST(matrix, bsubst)} verifies back substitution on an upper triangular
|
||||
3 \texttimes{} 3 matrix with a known solution that can be verified manually.
|
||||
|
||||
Both can be found in \texttt{tests/matrix.t.c}.
|
||||
|
||||
\section{Question Two}
|
||||
\label{sec:org098a7f1}
|
||||
Unless the following are met, the resulting solution will be garbage.
|
||||
|
||||
\begin{enumerate}
|
||||
\item The matrix \(U\) must be not be singular.
|
||||
\item \(U\) must be square (or it will fail the \texttt{assert}).
|
||||
\item The system created by \(Ux = b\) must be consistent.
|
||||
\item \(U\) is in (obviously) upper-triangular form.
|
||||
\end{enumerate}
|
||||
|
||||
Thus, the actual calculation performing the \(LU\) decomposition
|
||||
(in \texttt{lu\_decomp}) does a sanity
|
||||
check for 1-3 will fail an assert, should a point along the diagonal (pivot) be
|
||||
zero, or the matrix be non-factorable.
|
||||
|
||||
\section{Question Three}
|
||||
\label{sec:org40d5983}
|
||||
See LIZFCM \(\rightarrow\) Matrix Routines \(\rightarrow\) \texttt{fsubst}.
|
||||
|
||||
\texttt{UTEST(matrix, fsubst)} verifies forward substitution on a lower triangular 3 \texttimes{} 3
|
||||
matrix with a known solution that can be verified manually.
|
||||
|
||||
\section{Question Four}
|
||||
\label{sec:orgf7d23bb}
|
||||
|
||||
See LIZFCM \(\rightarrow\) Matrix Routines \(\rightarrow\) \texttt{gaussian\_elimination} and \texttt{solve\_gaussian\_elimination}.
|
||||
|
||||
\section{Question Five}
|
||||
\label{sec:org54e966c}
|
||||
See LIZFCM \(\rightarrow\) Matrix Routines \(\rightarrow\) \texttt{m\_dot\_v}, and the \texttt{UTEST(matrix, m\_dot\_v)} in
|
||||
\texttt{tests/matrix.t.c}.
|
||||
|
||||
\section{Question Six}
|
||||
\label{sec:org413b527}
|
||||
See \texttt{UTEST(matrix, solve\_gaussian\_elimination)} in \texttt{tests/matrix.t.c}, which generates a diagonally dominant 10 \texttimes{} 10 matrix
|
||||
and shows that the solution is consistent with the initial matrix, according to the steps given. Then,
|
||||
we do a dot product between each row of the diagonally dominant matrix and the solution vector to ensure
|
||||
it is near equivalent to the input vector.
|
||||
|
||||
\section{Question Seven}
|
||||
\label{sec:orgd3d7443}
|
||||
See \texttt{UTEST(matrix, solve\_matrix\_lu\_bsubst)} which does the same test in Question Six with the solution according to
|
||||
\texttt{solve\_matrix\_lu\_bsubst} as shown in the Software Manual.
|
||||
|
||||
\section{Question Eight}
|
||||
\label{sec:orgf8ac9bf}
|
||||
No, since the time complexity for Gaussian Elimination is always less than that of the LU factorization solution by \(O(n^2)\) operations
|
||||
(in LU factorization we perform both backwards and forwards substitutions proceeding the LU decomp, in Gaussian Elimination we only need
|
||||
back substitution).
|
||||
|
||||
\section{Question Nine, Ten}
|
||||
\label{sec:orgb270171}
|
||||
See LIZFCM Software manual and shared library in \texttt{dist} after compiling.
|
||||
\end{document}
|
@ -25,6 +25,8 @@ extern double l2_distance(Array_double *v1, Array_double *v2);
|
||||
extern double l1_distance(Array_double *v1, Array_double *v2);
|
||||
extern double linf_distance(Array_double *v1, Array_double *v2);
|
||||
extern Array_double *copy_vector(Array_double *v1);
|
||||
extern Array_double *add_element(Array_double *v, double x);
|
||||
extern Array_double *slice_element(Array_double *v, size_t x);
|
||||
extern void free_vector(Array_double *v);
|
||||
extern void format_vector_into(Array_double *v, char *s);
|
||||
extern int vector_equal(Array_double *a, Array_double *b);
|
||||
@ -33,11 +35,15 @@ extern Matrix_double *put_identity_diagonal(Matrix_double *m);
|
||||
extern Matrix_double **lu_decomp(Matrix_double *m);
|
||||
extern Array_double *bsubst(Matrix_double *u, Array_double *b);
|
||||
extern Array_double *fsubst(Matrix_double *l, Array_double *b);
|
||||
extern Array_double *solve_matrix(Matrix_double *m, Array_double *b);
|
||||
extern Array_double *solve_matrix_lu_bsubst(Matrix_double *m, Array_double *b);
|
||||
extern Matrix_double *gaussian_elimination(Matrix_double *m);
|
||||
extern Array_double *solve_matrix_gaussian(Matrix_double *m, Array_double *b);
|
||||
extern Array_double *m_dot_v(Matrix_double *m, Array_double *v);
|
||||
extern Matrix_double *m_dot_m(Matrix_double *a, Matrix_double *b);
|
||||
extern Array_double *col_v(Matrix_double *m, size_t x);
|
||||
extern Matrix_double *copy_matrix(Matrix_double *m);
|
||||
extern Matrix_double *add_column(Matrix_double *m, Array_double *col);
|
||||
extern Matrix_double *slice_column(Matrix_double *m, size_t col);
|
||||
extern void free_matrix(Matrix_double *m);
|
||||
extern void format_matrix_into(Matrix_double *m, char *s);
|
||||
extern int matrix_equal(Matrix_double *a, Matrix_double *b);
|
||||
|
@ -52,7 +52,7 @@
|
||||
#define c_max(x, y) (((x) >= (y)) ? (x) : (y))
|
||||
#define c_min(x, y) (((x) <= (y)) ? (x) : (y))
|
||||
|
||||
#define true 1;
|
||||
#define false 0;
|
||||
#define true 1
|
||||
#define false 0
|
||||
|
||||
#endif // MACROS_H
|
||||
|
26
notes/Oct-27.org
Normal file
26
notes/Oct-27.org
Normal file
@ -0,0 +1,26 @@
|
||||
Use a bisection criterion for a start
|
||||
|
||||
Hybrid Method: combine Bisection and Higher Order Method:
|
||||
- Newton's Method
|
||||
- Secant Method (Newton's method with secant approx.)
|
||||
|
||||
|
||||
#+BEGIN_SRC c
|
||||
fa = f(a)
|
||||
fb = f(b)
|
||||
if (fa * fb >= 0) return
|
||||
|
||||
error = 10 * tol
|
||||
iter = 0
|
||||
|
||||
while (error > tol && iter < maxiter) {
|
||||
x0 = 0.5 * (a + b)
|
||||
x1 = x0 - f(x0) / f'(x0)
|
||||
if (abs(x1 - x0) > 0.5 * (b - a)) {
|
||||
// do bisection
|
||||
} else{
|
||||
// do newton's method
|
||||
}
|
||||
}
|
||||
#+END_SRC
|
||||
|
34
notes/Oct-30.org
Normal file
34
notes/Oct-30.org
Normal file
@ -0,0 +1,34 @@
|
||||
* Power Method for computing the largest eigenvalue of a square matrix
|
||||
|
||||
An eigenvector, v \in R^n is a nonzero vector such that for some number, \lambda \in C, Av = \lambda v
|
||||
\Rightarrow || v || = 1
|
||||
|
||||
|
||||
Suppose we start with some vector v and assume, v = \alpha_0 v_0 + \alpha_1 v_1 + \cdots + \alpha_n v_n, where {v_1, \cdots, v_n}
|
||||
are the eigenvectors of A. Assume {v_1, \cdots, v_n} is a basis for R^n
|
||||
|
||||
We can order the eigenvalues such that \lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \cdots \ge \lambda_n
|
||||
|
||||
Compute u = Av
|
||||
= A(\alpha_1 v_1 + \cdots + \alpha_n v_n)
|
||||
= \alpha_1 Av_1 + A(\cdots) + \alpha_n A v_n
|
||||
= \alpha_1 \lambda_1 v_1 + \alpha_2 \lambda_2 v_2 + \cdots + \alpha_n \lambda_n v_n
|
||||
|
||||
w = A (Av)
|
||||
= \alpha_1 \lambda_1^2 v_1 + \alpha_2 \lambda_2^2 v_2 + \cdots + \alpha_n \lambda_n^2 v_n
|
||||
|
||||
Thus,
|
||||
A^k v = \alpha_1 \lambda_1^k v_1 + \alpha_2 \lambda_2^k v_2 + \cdots + \alpha_n \lambda_n^k v_n
|
||||
= \lambda_1^k ( \alpha_1 v_1 + \alpha_2 \frac{\lambda_2^k}{\lambda_1^k} v_2 + \cdots + \alpha_n \frac{\lambda_3^k}{\lambda_1^k} v_n)
|
||||
|
||||
As k \rightarrow \infty
|
||||
A^k v = \lambda_1^k (\alpha_1 v_1) + \text{negligble terms}
|
||||
|
||||
Algorithm:
|
||||
v \ne 0 with v \in R^n
|
||||
y = Av = \alpha_1 v_1 + \cdots + \alpha_n v_n
|
||||
|
||||
w = \frac{1}{||y||} \cdot y
|
||||
|
||||
Rayleigh Quotient:
|
||||
If $v$ is an eigenvector of A with eigenvalue \lambda then \frac{v^T A v}{v^T v} = \lambda
|
96
src/matrix.c
96
src/matrix.c
@ -1,5 +1,6 @@
|
||||
#include "lizfcm.h"
|
||||
#include <assert.h>
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
@ -71,7 +72,7 @@ Matrix_double **lu_decomp(Matrix_double *m) {
|
||||
for (size_t y = 0; y < m->rows; y++) {
|
||||
if (u->data[y]->data[y] == 0) {
|
||||
printf("ERROR: a pivot is zero in given matrix\n");
|
||||
exit(-1);
|
||||
assert(false);
|
||||
}
|
||||
}
|
||||
|
||||
@ -82,7 +83,7 @@ Matrix_double **lu_decomp(Matrix_double *m) {
|
||||
|
||||
if (denom == 0) {
|
||||
printf("ERROR: non-factorable matrix\n");
|
||||
exit(-1);
|
||||
assert(false);
|
||||
}
|
||||
|
||||
double factor = -(u->data[y]->data[x] / denom);
|
||||
@ -129,7 +130,7 @@ Array_double *fsubst(Matrix_double *l, Array_double *b) {
|
||||
return x;
|
||||
}
|
||||
|
||||
Array_double *solve_matrix(Matrix_double *m, Array_double *b) {
|
||||
Array_double *solve_matrix_lu_bsubst(Matrix_double *m, Array_double *b) {
|
||||
assert(b->size == m->rows);
|
||||
assert(m->rows == m->cols);
|
||||
|
||||
@ -144,10 +145,99 @@ Array_double *solve_matrix(Matrix_double *m, Array_double *b) {
|
||||
|
||||
free_matrix(u);
|
||||
free_matrix(l);
|
||||
free(u_l);
|
||||
|
||||
return x;
|
||||
}
|
||||
|
||||
Matrix_double *gaussian_elimination(Matrix_double *m) {
|
||||
uint64_t h = 0;
|
||||
uint64_t k = 0;
|
||||
|
||||
Matrix_double *m_cp = copy_matrix(m);
|
||||
|
||||
while (h < m_cp->rows && k < m_cp->cols) {
|
||||
uint64_t max_row = 0;
|
||||
double total_max = 0.0;
|
||||
|
||||
for (uint64_t row = h; row < m_cp->rows; row++) {
|
||||
double this_max = c_max(fabs(m_cp->data[row]->data[k]), total_max);
|
||||
if (c_max(this_max, total_max) == this_max) {
|
||||
max_row = row;
|
||||
}
|
||||
}
|
||||
|
||||
if (max_row == 0) {
|
||||
k++;
|
||||
continue;
|
||||
}
|
||||
|
||||
Array_double *swp = m_cp->data[max_row];
|
||||
m_cp->data[max_row] = m_cp->data[h];
|
||||
m_cp->data[h] = swp;
|
||||
|
||||
for (uint64_t row = h + 1; row < m_cp->rows; row++) {
|
||||
double factor = m_cp->data[row]->data[k] / m_cp->data[h]->data[k];
|
||||
m_cp->data[row]->data[k] = 0.0;
|
||||
|
||||
for (uint64_t col = k + 1; col < m_cp->cols; col++) {
|
||||
m_cp->data[row]->data[col] -= m_cp->data[h]->data[col] * factor;
|
||||
}
|
||||
}
|
||||
|
||||
h++;
|
||||
k++;
|
||||
}
|
||||
|
||||
return m_cp;
|
||||
}
|
||||
|
||||
Array_double *solve_matrix_gaussian(Matrix_double *m, Array_double *b) {
|
||||
assert(b->size == m->rows);
|
||||
assert(m->rows == m->cols);
|
||||
|
||||
Matrix_double *m_augment_b = add_column(m, b);
|
||||
Matrix_double *eliminated = gaussian_elimination(m_augment_b);
|
||||
|
||||
Array_double *b_gauss = col_v(eliminated, m->cols);
|
||||
Matrix_double *u = slice_column(eliminated, m->rows);
|
||||
|
||||
Array_double *solution = bsubst(u, b_gauss);
|
||||
|
||||
free_matrix(m_augment_b);
|
||||
free_matrix(eliminated);
|
||||
free_matrix(u);
|
||||
free_vector(b_gauss);
|
||||
|
||||
return solution;
|
||||
}
|
||||
|
||||
Matrix_double *slice_column(Matrix_double *m, size_t x) {
|
||||
Matrix_double *sliced = copy_matrix(m);
|
||||
|
||||
for (size_t row = 0; row < m->rows; row++) {
|
||||
Array_double *old_row = sliced->data[row];
|
||||
sliced->data[row] = slice_element(old_row, x);
|
||||
free_vector(old_row);
|
||||
}
|
||||
sliced->cols--;
|
||||
|
||||
return sliced;
|
||||
}
|
||||
|
||||
Matrix_double *add_column(Matrix_double *m, Array_double *v) {
|
||||
Matrix_double *pushed = copy_matrix(m);
|
||||
|
||||
for (size_t row = 0; row < m->rows; row++) {
|
||||
Array_double *old_row = pushed->data[row];
|
||||
pushed->data[row] = add_element(old_row, v->data[row]);
|
||||
free_vector(old_row);
|
||||
}
|
||||
|
||||
pushed->cols++;
|
||||
return pushed;
|
||||
}
|
||||
|
||||
void free_matrix(Matrix_double *m) {
|
||||
for (size_t y = 0; y < m->rows; ++y)
|
||||
free_vector(m->data[y]);
|
||||
|
15
src/vector.c
15
src/vector.c
@ -88,6 +88,21 @@ Array_double *copy_vector(Array_double *v) {
|
||||
return copy;
|
||||
}
|
||||
|
||||
Array_double *add_element(Array_double *v, double x) {
|
||||
Array_double *pushed = InitArrayWithSize(double, v->size + 1, 0.0);
|
||||
for (size_t i = 0; i < v->size; ++i)
|
||||
pushed->data[i] = v->data[i];
|
||||
pushed->data[v->size] = x;
|
||||
return pushed;
|
||||
}
|
||||
|
||||
Array_double *slice_element(Array_double *v, size_t x) {
|
||||
Array_double *sliced = InitArrayWithSize(double, v->size - 1, 0.0);
|
||||
for (size_t i = 0; i < v->size - 1; ++i)
|
||||
sliced->data[i] = i >= x ? v->data[i + 1] : v->data[i];
|
||||
return sliced;
|
||||
}
|
||||
|
||||
void free_vector(Array_double *v) {
|
||||
free(v->data);
|
||||
free(v);
|
||||
|
114
test/matrix.t.c
114
test/matrix.t.c
@ -7,6 +7,38 @@ UTEST(matrix, free) {
|
||||
EXPECT_NE(data_addr, (uint64_t)(m->data));
|
||||
}
|
||||
|
||||
UTEST(matrix, add_column) {
|
||||
Matrix_double *m = InitMatrixWithSize(double, 5, 5, 0.0);
|
||||
Array_double *col = InitArray(double, {1.0, 2.0, 3.0, 4.0, 5.0});
|
||||
Matrix_double *new_m = add_column(m, col);
|
||||
|
||||
for (size_t row = 0; row < m->rows; row++)
|
||||
EXPECT_EQ(new_m->data[row]->data[m->cols], col->data[row]);
|
||||
EXPECT_EQ(new_m->cols, m->cols + 1);
|
||||
|
||||
free_matrix(m);
|
||||
free_matrix(new_m);
|
||||
free_vector(col);
|
||||
}
|
||||
|
||||
UTEST(matrix, slice_column) {
|
||||
size_t slice = 1;
|
||||
|
||||
Matrix_double *m = InitMatrixWithSize(double, 5, 5, 1.0 * (rand() % 10));
|
||||
Matrix_double *new_m = slice_column(m, slice);
|
||||
|
||||
for (size_t row = 0; row < m->rows; row++) {
|
||||
Array_double *sliced_row = slice_element(m->data[row], slice);
|
||||
|
||||
EXPECT_TRUE(vector_equal(new_m->data[row], sliced_row));
|
||||
free_vector(sliced_row);
|
||||
}
|
||||
EXPECT_EQ(new_m->cols, m->cols - 1);
|
||||
|
||||
free_matrix(m);
|
||||
free_matrix(new_m);
|
||||
}
|
||||
|
||||
UTEST(matrix, put_identity_diagonal) {
|
||||
Matrix_double *m = InitMatrixWithSize(double, 8, 8, 0.0);
|
||||
Matrix_double *ident = put_identity_diagonal(m);
|
||||
@ -47,11 +79,53 @@ UTEST(matrix, m_dot_v) {
|
||||
free_vector(dotted);
|
||||
}
|
||||
|
||||
UTEST(matrix, bsubst) {
|
||||
Matrix_double *u = InitMatrixWithSize(double, 3, 3, 0.0);
|
||||
u->data[0]->data[0] = 1.0;
|
||||
u->data[0]->data[1] = 2.0;
|
||||
u->data[0]->data[2] = 3.0;
|
||||
u->data[1]->data[1] = 4.0;
|
||||
u->data[1]->data[2] = 5.0;
|
||||
u->data[2]->data[2] = 6.0;
|
||||
|
||||
Array_double *b = InitArray(double, {14.0, 29.0, 30.0});
|
||||
|
||||
Array_double *solution = bsubst(u, b);
|
||||
EXPECT_NEAR(solution->data[0], -3.0, 0.0001);
|
||||
EXPECT_NEAR(solution->data[1], 1.0, 0.0001);
|
||||
EXPECT_NEAR(solution->data[2], 5.0, 0.0001);
|
||||
|
||||
free_matrix(u);
|
||||
free_vector(b);
|
||||
free_vector(solution);
|
||||
}
|
||||
|
||||
UTEST(matrix, fsubst) {
|
||||
Matrix_double *l = InitMatrixWithSize(double, 3, 3, 0.0);
|
||||
l->data[0]->data[0] = 1.0;
|
||||
l->data[1]->data[0] = 2.0;
|
||||
l->data[1]->data[1] = 3.0;
|
||||
l->data[2]->data[0] = 4.0;
|
||||
l->data[2]->data[1] = 5.0;
|
||||
l->data[2]->data[2] = 6.0;
|
||||
|
||||
Array_double *b = InitArray(double, {14.0, 13.0, 32.0});
|
||||
|
||||
Array_double *solution = fsubst(l, b);
|
||||
EXPECT_NEAR(solution->data[0], 14.0, 0.0001);
|
||||
EXPECT_NEAR(solution->data[1], -5.0, 0.0001);
|
||||
EXPECT_NEAR(solution->data[2], 0.16667, 0.0001);
|
||||
|
||||
free_matrix(l);
|
||||
free_vector(b);
|
||||
free_vector(solution);
|
||||
}
|
||||
|
||||
UTEST(matrix, lu_decomp) {
|
||||
Matrix_double *m = InitMatrixWithSize(double, 8, 8, 0.0);
|
||||
Matrix_double *m = InitMatrixWithSize(double, 10, 10, 0.0);
|
||||
for (size_t y = 0; y < m->rows; ++y) {
|
||||
for (size_t x = 0; x < m->cols; ++x)
|
||||
m->data[y]->data[x] = x == y ? 5.0 : (5.0 - rand() % 10 + 1);
|
||||
m->data[y]->data[x] = x == y ? 20.0 : (100.0 - rand() % 100) / 100.0;
|
||||
}
|
||||
|
||||
Matrix_double **ul = lu_decomp(m);
|
||||
@ -75,15 +149,40 @@ UTEST(matrix, lu_decomp) {
|
||||
free(ul);
|
||||
}
|
||||
|
||||
UTEST(matrix, solve_matrix) {
|
||||
Matrix_double *m = InitMatrixWithSize(double, 8, 8, 0.0);
|
||||
UTEST(matrix, solve_gaussian_elimination) {
|
||||
Matrix_double *m = InitMatrixWithSize(double, 10, 10, 0.0);
|
||||
for (size_t y = 0; y < m->rows; ++y) {
|
||||
for (size_t x = 0; x < m->cols; ++x)
|
||||
m->data[y]->data[x] = x == y ? 10.0 : (5.0 - rand() % 10 + 1);
|
||||
m->data[y]->data[x] = x == y ? 20.0 : (100.0 - rand() % 100) / 100.0;
|
||||
}
|
||||
|
||||
Array_double *b = InitArray(double, {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0});
|
||||
Array_double *solution = solve_matrix(m, b);
|
||||
Array_double *b_1 = InitArrayWithSize(double, m->rows, 1.0);
|
||||
Array_double *b = m_dot_v(m, b_1);
|
||||
|
||||
Array_double *solution = solve_matrix_gaussian(m, b);
|
||||
|
||||
for (size_t y = 0; y < m->rows; y++) {
|
||||
double dot = v_dot_v(m->data[y], solution);
|
||||
EXPECT_NEAR(b->data[y], dot, 0.0001);
|
||||
}
|
||||
|
||||
free_vector(b_1);
|
||||
free_matrix(m);
|
||||
free_vector(b);
|
||||
free_vector(solution);
|
||||
}
|
||||
|
||||
UTEST(matrix, solve_matrix_lu_bsubst) {
|
||||
Matrix_double *m = InitMatrixWithSize(double, 10, 10, 0.0);
|
||||
for (size_t y = 0; y < m->rows; ++y) {
|
||||
for (size_t x = 0; x < m->cols; ++x)
|
||||
m->data[y]->data[x] = x == y ? 20.0 : (100.0 - rand() % 100) / 100.0;
|
||||
}
|
||||
|
||||
Array_double *b_1 = InitArrayWithSize(double, m->rows, 1.0);
|
||||
Array_double *b = m_dot_v(m, b_1);
|
||||
|
||||
Array_double *solution = solve_matrix_lu_bsubst(m, b);
|
||||
|
||||
for (size_t y = 0; y < m->rows; y++) {
|
||||
double dot = v_dot_v(m->data[y], solution);
|
||||
@ -92,6 +191,7 @@ UTEST(matrix, solve_matrix) {
|
||||
|
||||
free_matrix(m);
|
||||
free_vector(b);
|
||||
free_vector(b_1);
|
||||
free_vector(solution);
|
||||
}
|
||||
|
||||
|
@ -10,6 +10,28 @@ UTEST(vector, copy_vector) {
|
||||
free_vector(w);
|
||||
}
|
||||
|
||||
UTEST(vector, add_element) {
|
||||
Array_double *v = InitArray(double, {3, 1, -4});
|
||||
Array_double *w = add_element(v, -2);
|
||||
Array_double *w_expect = InitArray(double, {3, 1, -4, -2});
|
||||
EXPECT_TRUE(vector_equal(w, w_expect));
|
||||
|
||||
free_vector(v);
|
||||
free_vector(w);
|
||||
free_vector(w_expect);
|
||||
}
|
||||
|
||||
UTEST(vector, slice_element) {
|
||||
Array_double *v = InitArray(double, {3, 1, -4});
|
||||
Array_double *w = slice_element(v, 1);
|
||||
Array_double *w_expect = InitArray(double, {3, -4});
|
||||
EXPECT_TRUE(vector_equal(w, w_expect));
|
||||
|
||||
free_vector(v);
|
||||
free_vector(w);
|
||||
free_vector(w_expect);
|
||||
}
|
||||
|
||||
UTEST(vector, free_vector) {
|
||||
Array_double *v = InitArray(double, {3, 1, -4});
|
||||
uint64_t arr_addr = (uint64_t)v->data;
|
||||
|
Loading…
Reference in New Issue
Block a user