add lizfcm api doc entry for least dominant eigenvalue
This commit is contained in:
parent
2a35f68ac4
commit
76e00682b2
@ -1035,6 +1035,52 @@ double dominant_eigenvalue(Matrix_double *m, Array_double *v, double tolerance,
|
|||||||
return lambda;
|
return lambda;
|
||||||
}
|
}
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
*** ~least_dominant_eigenvalue~
|
||||||
|
+ Author: Elizabeth Hunt
|
||||||
|
+ Name: ~least_dominant_eigenvalue~
|
||||||
|
+ Location: ~src/eigen.c~
|
||||||
|
+ Input: a pointer to an invertible matrix ~m~, an initial eigenvector guess ~v~ (that is non
|
||||||
|
zero or orthogonal to an eigenvector with the dominant eigenvalue), a ~tolerance~ and
|
||||||
|
~max_iterations~ that act as stop conditions
|
||||||
|
+ Output: the least dominant eigenvalue with the lowest magnitude, approximated with the Inverse
|
||||||
|
Power Iteration Method
|
||||||
|
#+BEGIN_SRC c
|
||||||
|
double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
|
||||||
|
double tolerance, size_t max_iterations) {
|
||||||
|
assert(m->rows == m->cols);
|
||||||
|
assert(m->rows == v->size);
|
||||||
|
|
||||||
|
double shift = 0.0;
|
||||||
|
Matrix_double *m_c = copy_matrix(m);
|
||||||
|
for (size_t y = 0; y < m_c->rows; ++y)
|
||||||
|
m_c->data[y]->data[y] = m_c->data[y]->data[y] - shift;
|
||||||
|
|
||||||
|
double error = tolerance;
|
||||||
|
size_t iter = max_iterations;
|
||||||
|
double lambda = shift;
|
||||||
|
Array_double *eigenvector_1 = copy_vector(v);
|
||||||
|
|
||||||
|
while (error >= tolerance && (--iter) > 0) {
|
||||||
|
Array_double *eigenvector_2 = solve_matrix_lu_bsubst(m_c, eigenvector_1);
|
||||||
|
Array_double *normalized_eigenvector_2 =
|
||||||
|
scale_v(eigenvector_2, 1.0 / linf_norm(eigenvector_2));
|
||||||
|
free_vector(eigenvector_2);
|
||||||
|
eigenvector_2 = normalized_eigenvector_2;
|
||||||
|
|
||||||
|
Array_double *mx = m_dot_v(m, eigenvector_2);
|
||||||
|
double new_lambda =
|
||||||
|
v_dot_v(mx, eigenvector_2) / v_dot_v(eigenvector_2, eigenvector_2);
|
||||||
|
|
||||||
|
error = fabs(new_lambda - lambda);
|
||||||
|
lambda = new_lambda;
|
||||||
|
free_vector(eigenvector_1);
|
||||||
|
eigenvector_1 = eigenvector_2;
|
||||||
|
}
|
||||||
|
|
||||||
|
return lambda;
|
||||||
|
}
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
*** ~leslie_matrix~
|
*** ~leslie_matrix~
|
||||||
+ Author: Elizabeth Hunt
|
+ Author: Elizabeth Hunt
|
||||||
+ Name: ~leslie_matrix~
|
+ Name: ~leslie_matrix~
|
||||||
|
@ -12,4 +12,16 @@ See ~UTEST(eigen, leslie_matrix_dominant_eigenvalue)~ in ~test/eigen.t.c~
|
|||||||
and the entry ~Eigen-Adjacent -> leslie_matrix~ in the LIZFCM API
|
and the entry ~Eigen-Adjacent -> leslie_matrix~ in the LIZFCM API
|
||||||
documentation.
|
documentation.
|
||||||
* Question Three
|
* Question Three
|
||||||
|
See ~UTEST(eigen, least_dominant_eigenvalue)~ in ~test/eigen.t.c~ which
|
||||||
|
finds the least dominant eigenvalue on the matrix:
|
||||||
|
|
||||||
|
\begin{bmatrix}
|
||||||
|
2 & 2 & 4 \\
|
||||||
|
1 & 4 & 7 \\
|
||||||
|
0 & 2 & 6
|
||||||
|
\end{bmatrix}
|
||||||
|
|
||||||
|
which has eigenvalues: $5 + \sqrt{17}, 2, 5 - \sqrt{17}$ and should produce $\sqrt{17}$.
|
||||||
|
|
||||||
|
See also the entry ~Eigen-Adjacent -> least_dominant_eigenvalue~ in the LIZFCM API
|
||||||
|
documentation.
|
||||||
|
@ -14,5 +14,7 @@ x^{k + 1} \rightarrow Ax^k
|
|||||||
}
|
}
|
||||||
x_1[i] = sum / a[i][i];
|
x_1[i] = sum / a[i][i];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
err = 0.0;
|
||||||
}
|
}
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
Loading…
Reference in New Issue
Block a user