add shifted eigenvalue procedure and unit test
This commit is contained in:
parent
76e00682b2
commit
793c01c9bd
@ -1035,22 +1035,22 @@ double dominant_eigenvalue(Matrix_double *m, Array_double *v, double tolerance,
|
||||
return lambda;
|
||||
}
|
||||
#+END_SRC
|
||||
*** ~least_dominant_eigenvalue~
|
||||
*** ~shift_inverse_power_eigenvalue~
|
||||
+ Author: Elizabeth Hunt
|
||||
+ Name: ~least_dominant_eigenvalue~
|
||||
+ Location: ~src/eigen.c~
|
||||
+ Input: a pointer to an invertible matrix ~m~, an initial eigenvector guess ~v~ (that is non
|
||||
zero or orthogonal to an eigenvector with the dominant eigenvalue), a ~tolerance~ and
|
||||
~max_iterations~ that act as stop conditions
|
||||
+ Output: the least dominant eigenvalue with the lowest magnitude, approximated with the Inverse
|
||||
Power Iteration Method
|
||||
zero or orthogonal to an eigenvector with the dominant eigenvalue), a ~shift~ to act as the
|
||||
shifted \delta, and ~tolerance~ and ~max_iterations~ that act as stop conditions.
|
||||
+ Output: the eigenvalue closest to ~shift~ with the lowest magnitude closest to 0, approximated
|
||||
with the Inverse Power Iteration Method
|
||||
#+BEGIN_SRC c
|
||||
double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
|
||||
double tolerance, size_t max_iterations) {
|
||||
double shift_inverse_power_eigenvalue(Matrix_double *m, Array_double *v,
|
||||
double shift, double tolerance,
|
||||
size_t max_iterations) {
|
||||
assert(m->rows == m->cols);
|
||||
assert(m->rows == v->size);
|
||||
|
||||
double shift = 0.0;
|
||||
Matrix_double *m_c = copy_matrix(m);
|
||||
for (size_t y = 0; y < m_c->rows; ++y)
|
||||
m_c->data[y]->data[y] = m_c->data[y]->data[y] - shift;
|
||||
@ -1065,22 +1065,38 @@ double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
|
||||
Array_double *normalized_eigenvector_2 =
|
||||
scale_v(eigenvector_2, 1.0 / linf_norm(eigenvector_2));
|
||||
free_vector(eigenvector_2);
|
||||
eigenvector_2 = normalized_eigenvector_2;
|
||||
|
||||
Array_double *mx = m_dot_v(m, eigenvector_2);
|
||||
Array_double *mx = m_dot_v(m, normalized_eigenvector_2);
|
||||
double new_lambda =
|
||||
v_dot_v(mx, eigenvector_2) / v_dot_v(eigenvector_2, eigenvector_2);
|
||||
v_dot_v(mx, normalized_eigenvector_2) /
|
||||
v_dot_v(normalized_eigenvector_2, normalized_eigenvector_2);
|
||||
|
||||
error = fabs(new_lambda - lambda);
|
||||
lambda = new_lambda;
|
||||
free_vector(eigenvector_1);
|
||||
eigenvector_1 = eigenvector_2;
|
||||
eigenvector_1 = normalized_eigenvector_2;
|
||||
}
|
||||
|
||||
return lambda;
|
||||
}
|
||||
#+END_SRC
|
||||
|
||||
*** ~least_dominant_eigenvalue~
|
||||
+ Author: Elizabeth Hunt
|
||||
+ Name: ~least_dominant_eigenvalue~
|
||||
+ Location: ~src/eigen.c~
|
||||
+ Input: a pointer to an invertible matrix ~m~, an initial eigenvector guess ~v~ (that is non
|
||||
zero or orthogonal to an eigenvector with the dominant eigenvalue), a ~tolerance~ and
|
||||
~max_iterations~ that act as stop conditions.
|
||||
+ Output: the least dominant eigenvalue with the lowest magnitude closest to 0, approximated
|
||||
with the Inverse Power Iteration Method.
|
||||
#+BEGIN_SRC c
|
||||
double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
|
||||
double tolerance, size_t max_iterations) {
|
||||
return shift_inverse_power_eigenvalue(m, v, 0.0, tolerance, max_iterations);
|
||||
}
|
||||
#+END_SRC
|
||||
|
||||
*** ~leslie_matrix~
|
||||
+ Author: Elizabeth Hunt
|
||||
+ Name: ~leslie_matrix~
|
||||
|
@ -21,7 +21,23 @@ finds the least dominant eigenvalue on the matrix:
|
||||
0 & 2 & 6
|
||||
\end{bmatrix}
|
||||
|
||||
which has eigenvalues: $5 + \sqrt{17}, 2, 5 - \sqrt{17}$ and should produce $\sqrt{17}$.
|
||||
which has eigenvalues: $5 + \sqrt{17}, 2, 5 - \sqrt{17}$ and should thus produce $5 - \sqrt{17}$.
|
||||
|
||||
See also the entry ~Eigen-Adjacent -> least_dominant_eigenvalue~ in the LIZFCM API
|
||||
documentation.
|
||||
* Question Four
|
||||
See ~UTEST(eigen, shifted_eigenvalue)~ in ~test/eigen.t.c~ which
|
||||
finds the least dominant eigenvalue on the matrix:
|
||||
|
||||
\begin{bmatrix}
|
||||
2 & 2 & 4 \\
|
||||
1 & 4 & 7 \\
|
||||
0 & 2 & 6
|
||||
\end{bmatrix}
|
||||
|
||||
which has eigenvalues: $5 + \sqrt{17}, 2, 5 - \sqrt{17}$ and should thus produce $2.0$.
|
||||
|
||||
With the initial guess: $[0.5, 1.0, 0.75]$.
|
||||
|
||||
See also the entry ~Eigen-Adjacent -> shift_inverse_power_eigenvalue~ in the LIZFCM API
|
||||
documentation.
|
||||
|
@ -76,6 +76,9 @@ extern double fixed_point_secant_bisection_method(double (*f)(double),
|
||||
|
||||
extern double dominant_eigenvalue(Matrix_double *m, Array_double *v,
|
||||
double tolerance, size_t max_iterations);
|
||||
extern double shift_inverse_power_eigenvalue(Matrix_double *m, Array_double *v,
|
||||
double shift, double tolerance,
|
||||
size_t max_iterations);
|
||||
extern double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
|
||||
double tolerance,
|
||||
size_t max_iterations);
|
||||
|
19
src/eigen.c
19
src/eigen.c
@ -49,12 +49,12 @@ double dominant_eigenvalue(Matrix_double *m, Array_double *v, double tolerance,
|
||||
return lambda;
|
||||
}
|
||||
|
||||
double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
|
||||
double tolerance, size_t max_iterations) {
|
||||
double shift_inverse_power_eigenvalue(Matrix_double *m, Array_double *v,
|
||||
double shift, double tolerance,
|
||||
size_t max_iterations) {
|
||||
assert(m->rows == m->cols);
|
||||
assert(m->rows == v->size);
|
||||
|
||||
double shift = 0.0;
|
||||
Matrix_double *m_c = copy_matrix(m);
|
||||
for (size_t y = 0; y < m_c->rows; ++y)
|
||||
m_c->data[y]->data[y] = m_c->data[y]->data[y] - shift;
|
||||
@ -69,17 +69,22 @@ double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
|
||||
Array_double *normalized_eigenvector_2 =
|
||||
scale_v(eigenvector_2, 1.0 / linf_norm(eigenvector_2));
|
||||
free_vector(eigenvector_2);
|
||||
eigenvector_2 = normalized_eigenvector_2;
|
||||
|
||||
Array_double *mx = m_dot_v(m, eigenvector_2);
|
||||
Array_double *mx = m_dot_v(m, normalized_eigenvector_2);
|
||||
double new_lambda =
|
||||
v_dot_v(mx, eigenvector_2) / v_dot_v(eigenvector_2, eigenvector_2);
|
||||
v_dot_v(mx, normalized_eigenvector_2) /
|
||||
v_dot_v(normalized_eigenvector_2, normalized_eigenvector_2);
|
||||
|
||||
error = fabs(new_lambda - lambda);
|
||||
lambda = new_lambda;
|
||||
free_vector(eigenvector_1);
|
||||
eigenvector_1 = eigenvector_2;
|
||||
eigenvector_1 = normalized_eigenvector_2;
|
||||
}
|
||||
|
||||
return lambda;
|
||||
}
|
||||
|
||||
double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
|
||||
double tolerance, size_t max_iterations) {
|
||||
return shift_inverse_power_eigenvalue(m, v, 0.0, tolerance, max_iterations);
|
||||
}
|
||||
|
114
test/eigen.t.c
114
test/eigen.t.c
@ -1,50 +1,7 @@
|
||||
#include "lizfcm.test.h"
|
||||
|
||||
UTEST(eigen, leslie_matrix) {
|
||||
Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8});
|
||||
Array_double *survivor_ratios = InitArray(double, {0.8, 0.55});
|
||||
|
||||
Matrix_double *m = InitMatrixWithSize(double, 3, 3, 0.0);
|
||||
m->data[0]->data[0] = 0.0;
|
||||
m->data[0]->data[1] = 1.5;
|
||||
m->data[0]->data[2] = 0.8;
|
||||
m->data[1]->data[0] = 0.8;
|
||||
m->data[2]->data[1] = 0.55;
|
||||
|
||||
Matrix_double *leslie = leslie_matrix(survivor_ratios, felicity);
|
||||
|
||||
EXPECT_TRUE(matrix_equal(leslie, m));
|
||||
|
||||
free_matrix(leslie);
|
||||
free_matrix(m);
|
||||
free_vector(felicity);
|
||||
free_vector(survivor_ratios);
|
||||
}
|
||||
|
||||
UTEST(eigen, leslie_matrix_dominant_eigenvalue) {
|
||||
Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8});
|
||||
Array_double *survivor_ratios = InitArray(double, {0.8, 0.55});
|
||||
Matrix_double *leslie = leslie_matrix(survivor_ratios, felicity);
|
||||
Array_double *v_guess = InitArrayWithSize(double, 3, 2.0);
|
||||
double tolerance = 0.0001;
|
||||
uint64_t max_iterations = 64;
|
||||
|
||||
double expect_dominant_eigenvalue = 1.22005;
|
||||
|
||||
double approx_dominant_eigenvalue =
|
||||
dominant_eigenvalue(leslie, v_guess, tolerance, max_iterations);
|
||||
|
||||
EXPECT_NEAR(expect_dominant_eigenvalue, approx_dominant_eigenvalue,
|
||||
tolerance);
|
||||
|
||||
free_vector(v_guess);
|
||||
free_vector(survivor_ratios);
|
||||
free_vector(felicity);
|
||||
free_matrix(leslie);
|
||||
}
|
||||
|
||||
UTEST(eigen, least_dominant_eigenvalue) {
|
||||
|
||||
Matrix_double *eigen_test_matrix() {
|
||||
// produces a matrix that has eigenvalues [5 + sqrt{17}, 2, 5 - sqrt{17}]
|
||||
Matrix_double *m = InitMatrixWithSize(double, 3, 3, 0.0);
|
||||
m->data[0]->data[0] = 2.0;
|
||||
m->data[0]->data[1] = 2.0;
|
||||
@ -54,12 +11,17 @@ UTEST(eigen, least_dominant_eigenvalue) {
|
||||
m->data[1]->data[2] = 7.0;
|
||||
m->data[2]->data[1] = 2.0;
|
||||
m->data[2]->data[2] = 6.0;
|
||||
return m;
|
||||
}
|
||||
|
||||
UTEST(eigen, least_dominant_eigenvalue) {
|
||||
Matrix_double *m = eigen_test_matrix();
|
||||
|
||||
double expected_least_dominant_eigenvalue = 0.87689; // 5 - sqrt(17)
|
||||
double tolerance = 0.0001;
|
||||
uint64_t max_iterations = 64;
|
||||
|
||||
Array_double *v_guess = InitArrayWithSize(double, 3, 2.0);
|
||||
Array_double *v_guess = InitArrayWithSize(double, 3, 1.0);
|
||||
double approx_least_dominant_eigenvalue =
|
||||
least_dominant_eigenvalue(m, v_guess, tolerance, max_iterations);
|
||||
|
||||
@ -88,3 +50,63 @@ UTEST(eigen, dominant_eigenvalue) {
|
||||
free_matrix(m);
|
||||
free_vector(v_guess);
|
||||
}
|
||||
|
||||
UTEST(eigen, shifted_eigenvalue) {
|
||||
Matrix_double *m = eigen_test_matrix();
|
||||
|
||||
double least_dominant_eigenvalue = 0.87689; // 5 - sqrt{17}
|
||||
double dominant_eigenvalue = 9.12311; // 5 + sqrt{17}
|
||||
double expected_middle_eigenvalue = 2.0;
|
||||
double shift = (dominant_eigenvalue + least_dominant_eigenvalue) / 2.0;
|
||||
|
||||
double tolerance = 0.0001;
|
||||
uint64_t max_iterations = 64;
|
||||
Array_double *v_guess = InitArray(double, {0.5, 1.0, 0.75});
|
||||
|
||||
double approx_middle_eigenvalue = shift_inverse_power_eigenvalue(
|
||||
m, v_guess, shift, tolerance, max_iterations);
|
||||
|
||||
EXPECT_NEAR(approx_middle_eigenvalue, expected_middle_eigenvalue, tolerance);
|
||||
}
|
||||
|
||||
UTEST(eigen, leslie_matrix_dominant_eigenvalue) {
|
||||
Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8});
|
||||
Array_double *survivor_ratios = InitArray(double, {0.8, 0.55});
|
||||
Matrix_double *leslie = leslie_matrix(survivor_ratios, felicity);
|
||||
Array_double *v_guess = InitArrayWithSize(double, 3, 2.0);
|
||||
double tolerance = 0.0001;
|
||||
uint64_t max_iterations = 64;
|
||||
|
||||
double expect_dominant_eigenvalue = 1.22005;
|
||||
|
||||
double approx_dominant_eigenvalue =
|
||||
dominant_eigenvalue(leslie, v_guess, tolerance, max_iterations);
|
||||
|
||||
EXPECT_NEAR(expect_dominant_eigenvalue, approx_dominant_eigenvalue,
|
||||
tolerance);
|
||||
|
||||
free_vector(v_guess);
|
||||
free_vector(survivor_ratios);
|
||||
free_vector(felicity);
|
||||
free_matrix(leslie);
|
||||
}
|
||||
UTEST(eigen, leslie_matrix) {
|
||||
Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8});
|
||||
Array_double *survivor_ratios = InitArray(double, {0.8, 0.55});
|
||||
|
||||
Matrix_double *m = InitMatrixWithSize(double, 3, 3, 0.0);
|
||||
m->data[0]->data[0] = 0.0;
|
||||
m->data[0]->data[1] = 1.5;
|
||||
m->data[0]->data[2] = 0.8;
|
||||
m->data[1]->data[0] = 0.8;
|
||||
m->data[2]->data[1] = 0.55;
|
||||
|
||||
Matrix_double *leslie = leslie_matrix(survivor_ratios, felicity);
|
||||
|
||||
EXPECT_TRUE(matrix_equal(leslie, m));
|
||||
|
||||
free_matrix(leslie);
|
||||
free_matrix(m);
|
||||
free_vector(felicity);
|
||||
free_vector(survivor_ratios);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user