add leslie matrix dominant eigenvalue unit test

This commit is contained in:
Elizabeth Hunt 2023-11-27 10:14:50 -07:00
parent 4d2d4f5d7a
commit aa77d733b0
Signed by: simponic
GPG Key ID: 52B3774857EB24B1
7 changed files with 199 additions and 86 deletions

@ -1038,7 +1038,7 @@ double dominant_eigenvalue(Matrix_double *m, Array_double *v, double tolerance,
+ Input: two pointers to ~Array_double~'s representing the ratio of individuals in an age class
$x$ getting to the next age class $x+1$ and the number of offspring that individuals in an age
class create in age class 0.
+ Output: the leslie matrix generated with the input vectors.
+ Output: the leslie matrix generated from the input vectors.
#+BEGIN_SRC c
Matrix_double *leslie_matrix(Array_double *age_class_surivor_ratio,

Binary file not shown.

@ -1,4 +1,4 @@
% Created 2023-11-10 Fri 20:54
% Created 2023-11-15 Wed 14:43
% Intended LaTeX compiler: pdflatex
\documentclass[11pt]{article}
\usepackage[utf8]{inputenc}
@ -15,10 +15,10 @@
\notindent \notag \usepackage{amsmath} \usepackage[a4paper,margin=1in,portrait]{geometry}
\author{Elizabeth Hunt}
\date{\today}
\title{LIZFCM Software Manual (v0.3)}
\title{LIZFCM Software Manual (v0.4)}
\hypersetup{
pdfauthor={Elizabeth Hunt},
pdftitle={LIZFCM Software Manual (v0.3)},
pdftitle={LIZFCM Software Manual (v0.4)},
pdfkeywords={},
pdfsubject={},
pdfcreator={Emacs 29.1 (Org mode 9.7-pre)},
@ -30,7 +30,7 @@
\setlength\parindent{0pt}
\section{Design}
\label{sec:orgdac8577}
\label{sec:org78303cd}
The LIZFCM static library (at \url{https://github.com/Simponic/math-4610}) is a successor to my
attempt at writing codes for the Fundamentals of Computational Mathematics course in Common
Lisp, but the effort required to meet the requirement of creating a static library became
@ -47,7 +47,7 @@ the C programming language. I have a couple tenets for its design:
in files, and not individual files per function.
\end{itemize}
\section{Compilation}
\label{sec:org7755023}
\label{sec:orgb417494}
A provided \texttt{Makefile} is added for convencience. It has been tested on an \texttt{arm}-based M1 machine running
MacOS as well as \texttt{x86} Arch Linux.
@ -72,11 +72,11 @@ produce an object file:
Which is then bundled into a static library in \texttt{lib/lizfcm.a} and can be linked
in the standard method.
\section{The LIZFCM API}
\label{sec:org940357c}
\label{sec:org2144095}
\subsection{Simple Routines}
\label{sec:org28486b0}
\label{sec:orgc9edf4b}
\subsubsection{\texttt{smaceps}}
\label{sec:org1de3a4e}
\label{sec:org449b8ec}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{smaceps}
@ -101,7 +101,7 @@ float smaceps() {
}
\end{verbatim}
\subsubsection{\texttt{dmaceps}}
\label{sec:org742e61e}
\label{sec:org9a9ac05}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{dmaceps}
@ -126,9 +126,9 @@ double dmaceps() {
}
\end{verbatim}
\subsection{Derivative Routines}
\label{sec:org21233d3}
\label{sec:orgc31ab7b}
\subsubsection{\texttt{central\_derivative\_at}}
\label{sec:org6a00f6c}
\label{sec:org83dc368}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{central\_derivative\_at}
@ -151,14 +151,14 @@ double central_derivative_at(double (*f)(double), double a, double h) {
double x2 = a + h;
double x1 = a - h;
double y2 = (*f)(x2);
double y1 = (*f)(x1);
double y2 = f(x2);
double y1 = f(x1);
return (y2 - y1) / (x2 - x1);
}
\end{verbatim}
\subsubsection{\texttt{forward\_derivative\_at}}
\label{sec:org78f40a9}
\label{sec:orgf1ec748}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{forward\_derivative\_at}
@ -181,14 +181,14 @@ double forward_derivative_at(double (*f)(double), double a, double h) {
double x2 = a + h;
double x1 = a;
double y2 = (*f)(x2);
double y1 = (*f)(x1);
double y2 = f(x2);
double y1 = f(x1);
return (y2 - y1) / (x2 - x1);
}
\end{verbatim}
\subsubsection{\texttt{backward\_derivative\_at}}
\label{sec:org888d29e}
\label{sec:orga2827be}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{backward\_derivative\_at}
@ -211,16 +211,16 @@ double backward_derivative_at(double (*f)(double), double a, double h) {
double x2 = a;
double x1 = a - h;
double y2 = (*f)(x2);
double y1 = (*f)(x1);
double y2 = f(x2);
double y1 = f(x1);
return (y2 - y1) / (x2 - x1);
}
\end{verbatim}
\subsection{Vector Routines}
\label{sec:org73b87ea}
\label{sec:org4bc395e}
\subsubsection{Vector Arithmetic: \texttt{add\_v, minus\_v}}
\label{sec:orgf8b5da1}
\label{sec:orgcc76baa}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name(s): \texttt{add\_v}, \texttt{minus\_v}
@ -250,7 +250,7 @@ Array_double *minus_v(Array_double *v1, Array_double *v2) {
}
\end{verbatim}
\subsubsection{Norms: \texttt{l1\_norm}, \texttt{l2\_norm}, \texttt{linf\_norm}}
\label{sec:orgc5368a1}
\label{sec:org015b19a}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name(s): \texttt{l1\_norm}, \texttt{l2\_norm}, \texttt{linf\_norm}
@ -283,7 +283,7 @@ double linf_norm(Array_double *v) {
}
\end{verbatim}
\subsubsection{\texttt{vector\_distance}}
\label{sec:org0505e0b}
\label{sec:org78137a7}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{vector\_distance}
@ -303,7 +303,7 @@ double vector_distance(Array_double *v1, Array_double *v2,
}
\end{verbatim}
\subsubsection{Distances: \texttt{l1\_distance}, \texttt{l2\_distance}, \texttt{linf\_distance}}
\label{sec:org1c45dae}
\label{sec:orgd71d562}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name(s): \texttt{l1\_distance}, \texttt{l2\_distance}, \texttt{linf\_distance}
@ -328,7 +328,7 @@ double linf_distance(Array_double *v1, Array_double *v2) {
}
\end{verbatim}
\subsubsection{\texttt{sum\_v}}
\label{sec:org687d1bd}
\label{sec:orgb188125}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{sum\_v}
@ -346,7 +346,7 @@ double sum_v(Array_double *v) {
}
\end{verbatim}
\subsubsection{\texttt{scale\_v}}
\label{sec:org5926df1}
\label{sec:org0a828aa}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{scale\_v}
@ -364,7 +364,7 @@ Array_double *scale_v(Array_double *v, double m) {
}
\end{verbatim}
\subsubsection{\texttt{free\_vector}}
\label{sec:org3458f6a}
\label{sec:orgfff2e8b}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{free\_vector}
@ -381,7 +381,7 @@ void free_vector(Array_double *v) {
}
\end{verbatim}
\subsubsection{\texttt{add\_element}}
\label{sec:org54cba50}
\label{sec:orgf002846}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{add\_element}
@ -400,7 +400,7 @@ Array_double *add_element(Array_double *v, double x) {
}
\end{verbatim}
\subsubsection{\texttt{slice\_element}}
\label{sec:org02cd40a}
\label{sec:org8ef8f62}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{slice\_element}
@ -418,7 +418,7 @@ Array_double *slice_element(Array_double *v, size_t x) {
}
\end{verbatim}
\subsubsection{\texttt{copy\_vector}}
\label{sec:org4b0c599}
\label{sec:org6794d79}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{copy\_vector}
@ -437,7 +437,7 @@ Array_double *copy_vector(Array_double *v) {
}
\end{verbatim}
\subsubsection{\texttt{format\_vector\_into}}
\label{sec:orgde12441}
\label{sec:orgaaea3a7}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{format\_vector\_into}
@ -466,9 +466,9 @@ void format_vector_into(Array_double *v, char *s) {
}
\end{verbatim}
\subsection{Matrix Routines}
\label{sec:orgd85d8ec}
\label{sec:org7b74a8b}
\subsubsection{\texttt{lu\_decomp}}
\label{sec:org6a14cbd}
\label{sec:orgb5ebd91}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{lu\_decomp}
@ -528,7 +528,7 @@ Matrix_double **lu_decomp(Matrix_double *m) {
}
\end{verbatim}
\subsubsection{\texttt{bsubst}}
\label{sec:org8b51171}
\label{sec:org4b2bdc3}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{bsubst}
@ -553,7 +553,7 @@ Array_double *bsubst(Matrix_double *u, Array_double *b) {
}
\end{verbatim}
\subsubsection{\texttt{fsubst}}
\label{sec:orgf9180a0}
\label{sec:orgf6f799e}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{fsubst}
@ -580,7 +580,7 @@ Array_double *fsubst(Matrix_double *l, Array_double *b) {
}
\end{verbatim}
\subsubsection{\texttt{solve\_matrix\_lu\_bsubst}}
\label{sec:orgf3845f4}
\label{sec:org789acbf}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Location: \texttt{src/matrix.c}
@ -616,7 +616,7 @@ Array_double *solve_matrix_lu_bsubst(Matrix_double *m, Array_double *b) {
}
\end{verbatim}
\subsubsection{\texttt{gaussian\_elimination}}
\label{sec:orge926b79}
\label{sec:orge5cbe95}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Location: \texttt{src/matrix.c}
@ -671,7 +671,7 @@ Matrix_double *gaussian_elimination(Matrix_double *m) {
}
\end{verbatim}
\subsubsection{\texttt{solve\_matrix\_gaussian}}
\label{sec:orgc4f0d99}
\label{sec:org9c2b7c3}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Location: \texttt{src/matrix.c}
@ -704,7 +704,7 @@ Array_double *solve_matrix_gaussian(Matrix_double *m, Array_double *b) {
}
\end{verbatim}
\subsubsection{\texttt{m\_dot\_v}}
\label{sec:orgb7015af}
\label{sec:org4c184b5}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Location: \texttt{src/matrix.c}
@ -725,7 +725,7 @@ Array_double *m_dot_v(Matrix_double *m, Array_double *v) {
}
\end{verbatim}
\subsubsection{\texttt{put\_identity\_diagonal}}
\label{sec:orge955396}
\label{sec:org45882fa}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Location: \texttt{src/matrix.c}
@ -743,7 +743,7 @@ Matrix_double *put_identity_diagonal(Matrix_double *m) {
}
\end{verbatim}
\subsubsection{\texttt{slice\_column}}
\label{sec:org886997f}
\label{sec:org520c709}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Location: \texttt{src/matrix.c}
@ -766,7 +766,7 @@ Matrix_double *slice_column(Matrix_double *m, size_t x) {
}
\end{verbatim}
\subsubsection{\texttt{add\_column}}
\label{sec:org405e1c5}
\label{sec:org84191b6}
\begin{itemize}
\item Author: Elizabet Hunt
\item Location: \texttt{src/matrix.c}
@ -789,7 +789,7 @@ Matrix_double *add_column(Matrix_double *m, Array_double *v) {
}
\end{verbatim}
\subsubsection{\texttt{copy\_matrix}}
\label{sec:org01ea984}
\label{sec:orgb84b548}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Location: \texttt{src/matrix.c}
@ -808,7 +808,7 @@ Matrix_double *copy_matrix(Matrix_double *m) {
}
\end{verbatim}
\subsubsection{\texttt{free\_matrix}}
\label{sec:orgab8c2cf}
\label{sec:org0de0d86}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Location: \texttt{src/matrix.c}
@ -826,7 +826,7 @@ void free_matrix(Matrix_double *m) {
}
\end{verbatim}
\subsubsection{\texttt{format\_matrix\_into}}
\label{sec:org9e01978}
\label{sec:orgf8ba876}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{format\_matrix\_into}
@ -853,9 +853,9 @@ void format_matrix_into(Matrix_double *m, char *s) {
}
\end{verbatim}
\subsection{Root Finding Methods}
\label{sec:org81f315b}
\label{sec:org8f80c14}
\subsubsection{\texttt{find\_ivt\_range}}
\label{sec:orgc1dde4d}
\label{sec:orgf7fc734}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{find\_ivt\_range}
@ -887,14 +887,15 @@ Array_double *find_ivt_range(double (*f)(double), double start_x, double delta,
}
\end{verbatim}
\subsubsection{\texttt{bisect\_find\_root}}
\label{sec:orgb42a836}
\label{sec:orgcf0f46b}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name(s): \texttt{bisect\_find\_root}
\item Input: a one-ary function taking a double and producing a double, a closed interval represented
by \texttt{a} and \texttt{b}: \texttt{[a, b]}, a \texttt{tolerance} at which we return the estimated root once \(b-a < \text{tolerance}\), and a
\texttt{max\_iterations} to break us out of a loop if we can never reach the \texttt{tolerance}.
\item Output: a vector of size of 3 \texttt{double}'s representing first the .
\item Output: a vector of size of 3, \texttt{double}'s representing first the range \texttt{[a,b]} and then the midpoint,
\texttt{c} of the range.
\item Description: recursively uses binary search to split the interval until we reach \texttt{tolerance}. We
also assume the function \texttt{f} is continuous on \texttt{[a, b]}.
\end{itemize}
@ -909,7 +910,7 @@ Array_double *bisect_find_root(double (*f)(double), double a, double b,
double c = (1.0 / 2) * (a + b);
if (b - a < tolerance || max_iterations == 0)
return InitArray(double, a, b, c);
return InitArray(double, {a, b, c});
if (f(a) * f(c) < 0)
return bisect_find_root(f, a, c, tolerance, max_iterations - 1);
@ -917,7 +918,7 @@ Array_double *bisect_find_root(double (*f)(double), double a, double b,
}
\end{verbatim}
\subsubsection{\texttt{bisect\_find\_root\_with\_error\_assumption}}
\label{sec:org762134e}
\label{sec:org64e4346}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{bisect\_find\_root\_with\_error\_assumption}
@ -945,7 +946,7 @@ double bisect_find_root_with_error_assumption(double (*f)(double), double a,
}
\end{verbatim}
\subsubsection{\texttt{fixed\_point\_iteration\_method}}
\label{sec:org9f210ad}
\label{sec:orge6f6ba8}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{fixed\_point\_iteration\_method}
@ -976,7 +977,7 @@ double fixed_point_iteration_method(double (*f)(double), double (*g)(double),
}
\end{verbatim}
\subsubsection{\texttt{fixed\_point\_newton\_method}}
\label{sec:orgedecc45}
\label{sec:org9c22d8f}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{fixed\_point\_newton\_method}
@ -1004,44 +1005,40 @@ double fixed_point_newton_method(double (*f)(double), double (*fprime)(double),
}
\end{verbatim}
\subsubsection{\texttt{fixed\_point\_secant\_method}}
\label{sec:org63bcbe2}
\label{sec:org446d473}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{fixed\_point\_secant\_method}
\item Location: \texttt{src/roots.c}
\item Input: a pointer to a oneary function \(f\) taking a double and producing a double of which we are
trying to find a root, a guess \(x_0\), and a \(\delta\) of our first guess at which we draw the first
secant line according to the sequence \(x_n = x_{n-1} - f(x_{n-1}) \frac{x_{n-1} - x_{n-2}}{f(x_{n-1}) - f(x_{n-2})}\) which
thus simplifies to \(x_1 = (x_0 + \delta) - f(x_0 + \delta) \frac{(x_0 + \delta) - x_0}{f(x_0 + \delta) - f(x_0)} = (x_0 + \delta) - f(x_0 + \delta) \frac{\delta}{f(x_0 + \delta) - f(x_0)}\).
trying to find a root, a guess \(x_0\) and \(x_1\) in which a root lies between \([x_0, x_1]\); applying the
sequence \(x_n = x_{n-1} - f(x_{n-1}) \frac{x_{n-1} - x_{n-2}}{f(x_{n-1}) - f(x_{n-2})}\).
Additionally, a \texttt{max\_iterations} and \texttt{tolerance} as defined in the above method are required
inputs.
\item Output: a double representing the found approximate root \(\approx x^*\) recursively applied to the sequence.
\end{itemize}
\begin{verbatim}
double fixed_point_secant_method(double (*f)(double), double x_0, double delta,
double fixed_point_secant_method(double (*f)(double), double x_0, double x_1,
double tolerance, size_t max_iterations) {
if (max_iterations <= 0)
return x_0;
if (max_iterations == 0)
return x_1;
double x_1 = x_0 + delta;
double root = x_1 - f(x_1) * (delta / (f(x_1) - f(x_0)));
double root = x_1 - f(x_1) * ((x_1 - x_0) / (f(x_1) - f(x_0)));
if (tolerance >= fabs(f(root)))
return root;
double new_delta = root - x_1;
return fixed_point_secant_method(f, x_1, new_delta, tolerance,
max_iterations);
return fixed_point_secant_method(f, x_1, root, tolerance, max_iterations - 1);
}
\end{verbatim}
\subsubsection{\texttt{fixed\_point\_secant\_bisection\_method}}
\label{sec:org72d3074}
\label{sec:orgade170f}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{fixed\_point\_secant\_method}
\item Location: \texttt{src/roots.c}
\item Input: a pointer to a oneary function \(f\) taking a double and producing a double of which we are
trying to find a root, a guess \(x_0\), and a \(\delta\) of which we define our first interval \([x_0, x_0 + \delta]\).
trying to find a root, a guess \(x_0\), and a \(x_1\) of which we define our first interval \([x_0, x_1]\).
Then, we perform a single iteration of the \texttt{fixed\_point\_secant\_method} on this interval; if it
produces a root outside, we refresh the interval and root respectively with the given
\texttt{bisect\_find\_root} method. Additionally, a \texttt{max\_iterations} and \texttt{tolerance} as defined in the above method are required
@ -1052,17 +1049,16 @@ constraints defined.
\begin{verbatim}
double fixed_point_secant_bisection_method(double (*f)(double), double x_0,
double delta, double tolerance,
double x_1, double tolerance,
size_t max_iterations) {
double begin = x_0;
double end = x_0 + delta;
double end = x_1;
double root = x_0;
while (tolerance < fabs(f(root)) && max_iterations > 0) {
max_iterations--;
double secant_root =
fixed_point_secant_method(f, begin, end - begin, tolerance, 1);
double secant_root = fixed_point_secant_method(f, begin, end, tolerance, 1);
if (secant_root < begin || secant_root > end) {
Array_double *range_root = bisect_find_root(f, begin, end, tolerance, 1);
@ -1076,9 +1072,9 @@ double fixed_point_secant_bisection_method(double (*f)(double), double x_0,
}
root = secant_root;
// the root exists in [begin, secant_root]
if (f(root) * f(begin) < 0)
end = secant_root;
end = secant_root; // the root exists in [begin, secant_root]
else
begin = secant_root;
}
@ -1087,9 +1083,9 @@ double fixed_point_secant_bisection_method(double (*f)(double), double x_0,
}
\end{verbatim}
\subsection{Linear Routines}
\label{sec:org04f3e56}
\label{sec:orgc389980}
\subsubsection{\texttt{least\_squares\_lin\_reg}}
\label{sec:orgbd48d8e}
\label{sec:org850d9f6}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{least\_squares\_lin\_reg}
@ -1118,13 +1114,83 @@ Line *least_squares_lin_reg(Array_double *x, Array_double *y) {
return line;
}
\end{verbatim}
\subsection{Eigen-Adjacent}
\label{sec:org6bea1aa}
\subsubsection{\texttt{dominant\_eigenvalue}}
\label{sec:org0e70920}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{dominant\_eigenvalue}
\item Location: \texttt{src/eigen.c}
\item Input: a pointer to an invertible matrix \texttt{m}, an initial eigenvector guess \texttt{v} (that is non
zero or orthogonal to an eigenvector with the dominant eigenvalue), a \texttt{tolerance} and
\texttt{max\_iterations} that act as stop conditions
\item Output: the dominant eigenvalue with the highest magnitude, approximated with the Power
Iteration Method
\end{itemize}
\begin{verbatim}
double dominant_eigenvalue(Matrix_double *m, Array_double *v, double tolerance,
size_t max_iterations) {
assert(m->rows == m->cols);
assert(m->rows == v->size);
double error = tolerance;
size_t iter = max_iterations;
double lambda = 0.0;
Array_double *eigenvector_1 = copy_vector(v);
while (error >= tolerance && (--iter) > 0) {
Array_double *eigenvector_2 = m_dot_v(m, eigenvector_1);
Array_double *mx = m_dot_v(m, eigenvector_2);
double new_lambda =
v_dot_v(mx, eigenvector_2) / v_dot_v(eigenvector_2, eigenvector_2);
error = fabs(new_lambda - lambda);
lambda = new_lambda;
free_vector(eigenvector_1);
eigenvector_1 = eigenvector_2;
}
return lambda;
}
\end{verbatim}
\subsubsection{\texttt{leslie\_matrix}}
\label{sec:org88d4547}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{leslie\_matrix}
\item Location: \texttt{src/eigen.c}
\item Input: two pointers to \texttt{Array\_double}'s representing the ratio of individuals in an age class
\(x\) getting to the next age class \(x+1\) and the number of offspring that individuals in an age
class create in age class 0.
\item Output: the leslie matrix generated with the input vectors.
\end{itemize}
\begin{verbatim}
Matrix_double *leslie_matrix(Array_double *age_class_surivor_ratio,
Array_double *age_class_offspring) {
assert(age_class_surivor_ratio->size + 1 == age_class_offspring->size);
Matrix_double *leslie = InitMatrixWithSize(double, age_class_offspring->size,
age_class_offspring->size, 0.0);
free_vector(leslie->data[0]);
leslie->data[0] = age_class_offspring;
for (size_t i = 0; i < age_class_surivor_ratio->size; i++)
leslie->data[i + 1]->data[i] = age_class_surivor_ratio->data[i];
return leslie;
}
\end{verbatim}
\subsection{Appendix / Miscellaneous}
\label{sec:orgf6b30a5}
\label{sec:org925aa32}
\subsubsection{Data Types}
\label{sec:orgd382789}
\label{sec:org37335a1}
\begin{enumerate}
\item \texttt{Line}
\label{sec:orgab590b9}
\label{sec:orgaf72b30}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Location: \texttt{inc/types.h}
@ -1137,7 +1203,7 @@ typedef struct Line {
} Line;
\end{verbatim}
\item The \texttt{Array\_<type>} and \texttt{Matrix\_<type>}
\label{sec:org5be3024}
\label{sec:org82faf8e}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Location: \texttt{inc/types.h}
@ -1168,10 +1234,10 @@ typedef struct {
\end{verbatim}
\end{enumerate}
\subsubsection{Macros}
\label{sec:org20a391c}
\label{sec:org1f988ea}
\begin{enumerate}
\item \texttt{c\_max} and \texttt{c\_min}
\label{sec:orgfc6117a}
\label{sec:org8b37b18}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Location: \texttt{inc/macros.h}
@ -1184,7 +1250,7 @@ typedef struct {
#define c_min(x, y) (((x) <= (y)) ? (x) : (y))
\end{verbatim}
\item \texttt{InitArray}
\label{sec:org472f039}
\label{sec:org04ec2d7}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Location: \texttt{inc/macros.h}
@ -1204,7 +1270,7 @@ typedef struct {
})
\end{verbatim}
\item \texttt{InitArrayWithSize}
\label{sec:orgbe950b8}
\label{sec:org4aff8f6}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Location: \texttt{inc/macros.h}
@ -1224,7 +1290,7 @@ typedef struct {
})
\end{verbatim}
\item \texttt{InitMatrixWithSize}
\label{sec:org5965f3b}
\label{sec:org3457577}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Location: \texttt{inc/macros.h}

@ -8,3 +8,8 @@
See ~UTEST(eigen, dominant_eigenvalue)~ in ~test/eigen.t.c~ and the entry
~Eigen-Adjacent -> dominant_eigenvalue~ in the LIZFCM API documentation.
* Question Two
See ~UTEST(eigen, leslie_matrix_dominant_eigenvalue)~ in ~test/eigen.t.c~
and the entry ~Eigen-Adjacent -> leslie_matrix~ in the LIZFCM API
documentation.
* Question Three

18
notes/Nov-27.org Normal file

@ -0,0 +1,18 @@
x^{k+1} = D^{-1}(b - (L + U) x^k)
x^{k + 1} \rightarrow Ax^k
#+BEGIN_SRC c
loop while (err > tol && iter < maxiter) {
for (int i = 0; i < n; i++) {
sum = b[i];
for (int j = 0; j < i; j++) {
sum = sum - a[i][x] * x_0[i];
}
for (int j = i; j < n; j++) {
sum = sum + a[i][j] * x_0[j];
}
x_1[i] = sum / a[i][i];
}
}
#+END_SRC

@ -12,7 +12,7 @@ Matrix_double *leslie_matrix(Array_double *age_class_surivor_ratio,
age_class_offspring->size, 0.0);
free_vector(leslie->data[0]);
leslie->data[0] = age_class_offspring;
leslie->data[0] = copy_vector(age_class_offspring);
for (size_t i = 0; i < age_class_surivor_ratio->size; i++)
leslie->data[i + 1]->data[i] = age_class_surivor_ratio->data[i];

@ -17,6 +17,30 @@ UTEST(eigen, leslie_matrix) {
free_matrix(leslie);
free_matrix(m);
free_vector(felicity);
free_vector(survivor_ratios);
}
UTEST(eigen, leslie_matrix_dominant_eigenvalue) {
Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8});
Array_double *survivor_ratios = InitArray(double, {0.8, 0.55});
Matrix_double *leslie = leslie_matrix(survivor_ratios, felicity);
Array_double *v_guess = InitArrayWithSize(double, 3, 1.0);
double tolerance = 0.0001;
uint64_t max_iterations = 64;
double expect_dominant_eigenvalue = 1.22005;
double approx_dominant_eigenvalue =
dominant_eigenvalue(leslie, v_guess, tolerance, max_iterations);
EXPECT_NEAR(expect_dominant_eigenvalue, approx_dominant_eigenvalue,
tolerance);
free_vector(v_guess);
free_vector(survivor_ratios);
free_vector(felicity);
free_matrix(leslie);
}
UTEST(eigen, dominant_eigenvalue) {