generate leslie matrix
This commit is contained in:
parent
1a6b952736
commit
c02573cb66
@ -76,4 +76,6 @@ extern double fixed_point_secant_bisection_method(double (*f)(double),
|
|||||||
|
|
||||||
extern double dominant_eigenvalue(Matrix_double *m, Array_double *v,
|
extern double dominant_eigenvalue(Matrix_double *m, Array_double *v,
|
||||||
double tolerance, size_t max_iterations);
|
double tolerance, size_t max_iterations);
|
||||||
|
extern Matrix_double *leslie_matrix(Array_double *age_class_surivor_ratio,
|
||||||
|
Array_double *age_class_offspring);
|
||||||
#endif // LIZFCM_H
|
#endif // LIZFCM_H
|
||||||
|
17
src/eigen.c
17
src/eigen.c
@ -4,6 +4,23 @@
|
|||||||
#include <stdio.h>
|
#include <stdio.h>
|
||||||
#include <string.h>
|
#include <string.h>
|
||||||
|
|
||||||
|
Matrix_double *leslie_matrix(Array_double *age_class_surivor_ratio,
|
||||||
|
Array_double *age_class_offspring) {
|
||||||
|
assert(age_class_surivor_ratio->size + 1 == age_class_offspring->size);
|
||||||
|
|
||||||
|
Matrix_double *leslie = InitMatrixWithSize(double, age_class_offspring->size,
|
||||||
|
age_class_offspring->size, 0.0);
|
||||||
|
|
||||||
|
free_vector(leslie->data[0]);
|
||||||
|
leslie->data[0] = age_class_offspring;
|
||||||
|
|
||||||
|
for (size_t i = 0; i < age_class_surivor_ratio->size; i++) {
|
||||||
|
leslie->data[i + 1]->data[i] = age_class_surivor_ratio->data[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
return leslie;
|
||||||
|
}
|
||||||
|
|
||||||
double dominant_eigenvalue(Matrix_double *m, Array_double *v, double tolerance,
|
double dominant_eigenvalue(Matrix_double *m, Array_double *v, double tolerance,
|
||||||
size_t max_iterations) {
|
size_t max_iterations) {
|
||||||
assert(m->rows == m->cols);
|
assert(m->rows == m->cols);
|
||||||
|
@ -1,5 +1,24 @@
|
|||||||
#include "lizfcm.test.h"
|
#include "lizfcm.test.h"
|
||||||
|
|
||||||
|
UTEST(eigen, leslie_matrix) {
|
||||||
|
Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8});
|
||||||
|
Array_double *survivor_ratios = InitArray(double, {0.8, 0.55});
|
||||||
|
|
||||||
|
Matrix_double *m = InitMatrixWithSize(double, 3, 3, 0.0);
|
||||||
|
m->data[0]->data[0] = 0.0;
|
||||||
|
m->data[0]->data[1] = 1.5;
|
||||||
|
m->data[0]->data[2] = 0.8;
|
||||||
|
m->data[1]->data[0] = 0.8;
|
||||||
|
m->data[2]->data[1] = 0.55;
|
||||||
|
|
||||||
|
Matrix_double *leslie = leslie_matrix(survivor_ratios, felicity);
|
||||||
|
|
||||||
|
EXPECT_TRUE(matrix_equal(leslie, m));
|
||||||
|
|
||||||
|
free_matrix(leslie);
|
||||||
|
free_matrix(m);
|
||||||
|
}
|
||||||
|
|
||||||
UTEST(eigen, dominant_eigenvalue) {
|
UTEST(eigen, dominant_eigenvalue) {
|
||||||
Matrix_double *m = InitMatrixWithSize(double, 2, 2, 0.0);
|
Matrix_double *m = InitMatrixWithSize(double, 2, 2, 0.0);
|
||||||
m->data[0]->data[0] = 2.0;
|
m->data[0]->data[0] = 2.0;
|
||||||
|
Loading…
Reference in New Issue
Block a user