From fdc1c5642ecebcfbb88ce19ac8baab0b1b4ef24f Mon Sep 17 00:00:00 2001 From: Elizabeth Hunt Date: Sat, 9 Dec 2023 20:46:16 -0700 Subject: [PATCH] add software manual updates for hw8 --- doc/software_manual.org | 130 ++++++++++++++++++++++++++++++++++++---- homeworks/hw-8.org | 30 ++++++++-- inc/lizfcm.h | 3 + src/matrix.c | 67 ++++++++++++++++----- src/rand.c | 4 +- test/jacobi.t.c | 60 +++++++++++++++++++ 6 files changed, 259 insertions(+), 35 deletions(-) diff --git a/doc/software_manual.org b/doc/software_manual.org index 3e11911..b41ec03 100644 --- a/doc/software_manual.org +++ b/doc/software_manual.org @@ -1,4 +1,4 @@ -#+TITLE: LIZFCM Software Manual (v0.5) +#+TITLE: LIZFCM Software Manual (v0.6) #+AUTHOR: Elizabeth Hunt #+LATEX_HEADER: \notindent \notag \usepackage{amsmath} \usepackage[a4paper,margin=1in,portrait]{geometry} #+LATEX: \setlength\parindent{0pt} @@ -544,30 +544,32 @@ applying reduction to all other rows. The general idea is available at [[https:/ #+BEGIN_SRC c Matrix_double *gaussian_elimination(Matrix_double *m) { - uint64_t h = 0; - uint64_t k = 0; + uint64_t h = 0, k = 0; Matrix_double *m_cp = copy_matrix(m); while (h < m_cp->rows && k < m_cp->cols) { - uint64_t max_row = 0; - double total_max = 0.0; + uint64_t max_row = h; + double max_val = 0.0; for (uint64_t row = h; row < m_cp->rows; row++) { - double this_max = c_max(fabs(m_cp->data[row]->data[k]), total_max); - if (c_max(this_max, total_max) == this_max) { + double val = fabs(m_cp->data[row]->data[k]); + if (val > max_val) { + max_val = val; max_row = row; } } - if (max_row == 0) { + if (max_val == 0.0) { k++; continue; } - Array_double *swp = m_cp->data[max_row]; - m_cp->data[max_row] = m_cp->data[h]; - m_cp->data[h] = swp; + if (max_row != h) { + Array_double *swp = m_cp->data[max_row]; + m_cp->data[max_row] = m_cp->data[h]; + m_cp->data[h] = swp; + } for (uint64_t row = h + 1; row < m_cp->rows; row++) { double factor = m_cp->data[row]->data[k] / m_cp->data[h]->data[k]; @@ -743,7 +745,7 @@ void format_matrix_into(Matrix_double *m, char *s) { strcpy(s, "empty"); for (size_t y = 0; y < m->rows; ++y) { - char row_s[256]; + char row_s[5192]; strcpy(row_s, ""); format_vector_into(m->data[y], row_s); @@ -1159,8 +1161,112 @@ Matrix_double *leslie_matrix(Array_double *age_class_surivor_ratio, return leslie; } #+END_SRC +** Jacobi / Gauss-Siedel +*** ~jacobi_solve~ ++ Author: Elizabeth Hunt ++ Name: ~jacobi_solve~ ++ Location: ~src/matrix.c~ ++ Input: a pointer to a diagonally dominant square matrix $m$, a vector representing + the value $b$ in $mx = b$, a double representing the maximum distance between + the solutions produced by iteration $i$ and $i+1$ (by L2 norm a.k.a cartesian + distance), and a ~max_iterations~ which we force stop. ++ Output: the converged-upon solution $x$ to $mx = b$ +#+BEGIN_SRC c +Array_double *jacobi_solve(Matrix_double *m, Array_double *b, + double l2_convergence_tolerance, + size_t max_iterations) { + assert(m->rows == m->cols); + assert(b->size == m->cols); + size_t iter = max_iterations; + + Array_double *x_k = InitArrayWithSize(double, b->size, 0.0); + Array_double *x_k_1 = + InitArrayWithSize(double, b->size, rand_from(0.1, 10.0)); + + while ((--iter) > 0 && l2_distance(x_k_1, x_k) > l2_convergence_tolerance) { + for (size_t i = 0; i < m->rows; i++) { + double delta = 0.0; + for (size_t j = 0; j < m->cols; j++) { + if (i == j) + continue; + delta += m->data[i]->data[j] * x_k->data[j]; + } + x_k_1->data[i] = (b->data[i] - delta) / m->data[i]->data[i]; + } + + Array_double *tmp = x_k; + x_k = x_k_1; + x_k_1 = tmp; + } + + free_vector(x_k); + return x_k_1; +} +#+END_SRC + +*** ~gauss_siedel_solve~ ++ Author: Elizabeth Hunt ++ Name: ~gauss_siedel_solve~ ++ Location: ~src/matrix.c~ ++ Input: a pointer to a [[https://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method][diagonally dominant or symmetric and positive definite]] + square matrix $m$, a vector representing + the value $b$ in $mx = b$, a double representing the maximum distance between + the solutions produced by iteration $i$ and $i+1$ (by L2 norm a.k.a cartesian + distance), and a ~max_iterations~ which we force stop. ++ Output: the converged-upon solution $x$ to $mx = b$ ++ Description: we use almost the exact same method as ~jacobi_solve~ but modify + only one array in accordance to the Gauss-Siedel method, but which is necessarily + copied before due to the convergence check. +#+BEGIN_SRC c + +Array_double *gauss_siedel_solve(Matrix_double *m, Array_double *b, + double l2_convergence_tolerance, + size_t max_iterations) { + assert(m->rows == m->cols); + assert(b->size == m->cols); + size_t iter = max_iterations; + + Array_double *x_k = InitArrayWithSize(double, b->size, 0.0); + Array_double *x_k_1 = + InitArrayWithSize(double, b->size, rand_from(0.1, 10.0)); + + while ((--iter) > 0) { + for (size_t i = 0; i < x_k->size; i++) + x_k->data[i] = x_k_1->data[i]; + + for (size_t i = 0; i < m->rows; i++) { + double delta = 0.0; + for (size_t j = 0; j < m->cols; j++) { + if (i == j) + continue; + delta += m->data[i]->data[j] * x_k_1->data[j]; + } + x_k_1->data[i] = (b->data[i] - delta) / m->data[i]->data[i]; + } + + if (l2_distance(x_k_1, x_k) <= l2_convergence_tolerance) + break; + } + + free_vector(x_k); + return x_k_1; +} +#+END_SRC ** Appendix / Miscellaneous +*** Random ++ Author: Elizabeth Hunt ++ Name: ~rand_from~ ++ Location: ~src/rand.c~ ++ Input: a pair of doubles, min and max to generate a random number min + \le x \le max ++ Output: a random double in the constraints shown + +#+BEGIN_SRC c +double rand_from(double min, double max) { + return min + (rand() / (RAND_MAX / (max - min))); +} +#+END_SRC *** Data Types **** ~Line~ + Author: Elizabeth Hunt diff --git a/homeworks/hw-8.org b/homeworks/hw-8.org index 42d9dac..f4f4ebd 100644 --- a/homeworks/hw-8.org +++ b/homeworks/hw-8.org @@ -4,14 +4,34 @@ #+LATEX: \setlength\parindent{0pt} #+OPTIONS: toc:nil -TODO: Update LIZFCM org file with jacobi solve, format_matrix_into, rand +TODO: Update LIZFCM org file with jacobi solve * Question One See ~UTEST(jacobi, solve_jacobi)~ in ~test/jacobi.t.c~ and the entry ~Jacobi -> solve_jacobi~ in the LIZFCM API documentation. * Question Two -A problem arises when using the Jacobi method to solve for the previous population -distribution, $n_k$, from $Ln_{k} = n_{k+1}$, because a Leslie matrix is not diagonally -dominant and will cause a division by zero. Likewise, we cannot factor it into $L$ -and $U$ terms and apply back substitution because pivot points are zero. +We cannot just perform the Jacobi algorithm on a Leslie matrix since +it is obviously not diagonally dominant - which is a requirement. It is +certainly not always the case, but, if a Leslie matrix $L$ is invertible, we can +first perform gaussian elimination on $L$ augmented with $n_{k+1}$ +to obtain $n_k$ with the Jacobi method. See ~UTEST(jacobi, leslie_solve)~ +in ~test/jacobi.t.c~ for an example wherein this method is tested on a Leslie +matrix to recompute a given initial population distribution. + +In terms of accuracy, an LU factorization and back substitution approach will +always be as correct as possible within the limits of computation; it's a +direct solution method. It's simply the nature of the Jacobi algorithm being +a convergent solution that determines its accuracy. + +LU factorization also performs in order $O(n^3)$ runtime for an $n \times n$ +matrix, whereas the Jacobi algorithm runs in order $O(k n^2) = O(n^2)$ but with the +con that $k$ is given by the convergence criteria, which might end up worse in +some cases, than LU. + * Question Three +See ~UTEST(jacobi, gauss_siedel_solve)~ in ~test/jacobi.t.c~ which runs the same +unit test as ~UTEST(jacobi, solve_jacobi)~ but using the +~Jacobi -> gauss_siedel_solve~ method as documented in the LIZFCM API reference. + +* Question Four, Five + diff --git a/inc/lizfcm.h b/inc/lizfcm.h index 70ebd2f..1dcdb6b 100644 --- a/inc/lizfcm.h +++ b/inc/lizfcm.h @@ -93,5 +93,8 @@ extern double rand_from(double min, double max); extern Array_double *jacobi_solve(Matrix_double *m, Array_double *b, double tolerance, size_t max_iterations); +extern Array_double *gauss_siedel_solve(Matrix_double *m, Array_double *b, + double l2_convergence_tolerance, + size_t max_iterations); #endif // LIZFCM_H diff --git a/src/matrix.c b/src/matrix.c index 5f36d12..901a426 100644 --- a/src/matrix.c +++ b/src/matrix.c @@ -2,9 +2,9 @@ #include #include #include -n #include +#include - Array_double *m_dot_v(Matrix_double *m, Array_double *v) { +Array_double *m_dot_v(Matrix_double *m, Array_double *v) { assert(v->size == m->cols); Array_double *product = copy_vector(v); @@ -161,30 +161,32 @@ Array_double *solve_matrix_lu_bsubst(Matrix_double *m, Array_double *b) { } Matrix_double *gaussian_elimination(Matrix_double *m) { - uint64_t h = 0; - uint64_t k = 0; + uint64_t h = 0, k = 0; Matrix_double *m_cp = copy_matrix(m); while (h < m_cp->rows && k < m_cp->cols) { - uint64_t max_row = 0; - double total_max = 0.0; + uint64_t max_row = h; + double max_val = 0.0; for (uint64_t row = h; row < m_cp->rows; row++) { - double this_max = c_max(fabs(m_cp->data[row]->data[k]), total_max); - if (c_max(this_max, total_max) == this_max) { + double val = fabs(m_cp->data[row]->data[k]); + if (val > max_val) { + max_val = val; max_row = row; } } - if (max_row == 0) { + if (max_val == 0.0) { k++; continue; } - Array_double *swp = m_cp->data[max_row]; - m_cp->data[max_row] = m_cp->data[h]; - m_cp->data[h] = swp; + if (max_row != h) { + Array_double *swp = m_cp->data[max_row]; + m_cp->data[max_row] = m_cp->data[h]; + m_cp->data[h] = swp; + } for (uint64_t row = h + 1; row < m_cp->rows; row++) { double factor = m_cp->data[row]->data[k] / m_cp->data[h]->data[k]; @@ -225,16 +227,18 @@ Array_double *solve_matrix_gaussian(Matrix_double *m, Array_double *b) { Array_double *jacobi_solve(Matrix_double *m, Array_double *b, double l2_convergence_tolerance, size_t max_iterations) { + assert(m->rows == m->cols); + assert(b->size == m->cols); size_t iter = max_iterations; - Array_double *x_k = InitArrayWithSize(double, b->size, rand_from(0.1, 10.0)); + Array_double *x_k = InitArrayWithSize(double, b->size, 0.0); Array_double *x_k_1 = InitArrayWithSize(double, b->size, rand_from(0.1, 10.0)); while ((--iter) > 0 && l2_distance(x_k_1, x_k) > l2_convergence_tolerance) { - for (size_t i = 0; i < x_k->size; i++) { + for (size_t i = 0; i < m->rows; i++) { double delta = 0.0; - for (size_t j = 0; j < x_k->size; j++) { + for (size_t j = 0; j < m->cols; j++) { if (i == j) continue; delta += m->data[i]->data[j] * x_k->data[j]; @@ -251,6 +255,39 @@ Array_double *jacobi_solve(Matrix_double *m, Array_double *b, return x_k_1; } +Array_double *gauss_siedel_solve(Matrix_double *m, Array_double *b, + double l2_convergence_tolerance, + size_t max_iterations) { + assert(m->rows == m->cols); + assert(b->size == m->cols); + size_t iter = max_iterations; + + Array_double *x_k = InitArrayWithSize(double, b->size, 0.0); + Array_double *x_k_1 = + InitArrayWithSize(double, b->size, rand_from(0.1, 10.0)); + + while ((--iter) > 0) { + for (size_t i = 0; i < x_k->size; i++) + x_k->data[i] = x_k_1->data[i]; + + for (size_t i = 0; i < m->rows; i++) { + double delta = 0.0; + for (size_t j = 0; j < m->cols; j++) { + if (i == j) + continue; + delta += m->data[i]->data[j] * x_k_1->data[j]; + } + x_k_1->data[i] = (b->data[i] - delta) / m->data[i]->data[i]; + } + + if (l2_distance(x_k_1, x_k) <= l2_convergence_tolerance) + break; + } + + free_vector(x_k); + return x_k_1; +} + Matrix_double *slice_column(Matrix_double *m, size_t x) { Matrix_double *sliced = copy_matrix(m); diff --git a/src/rand.c b/src/rand.c index ff375ed..574a955 100644 --- a/src/rand.c +++ b/src/rand.c @@ -1,7 +1,5 @@ #include "lizfcm.h" double rand_from(double min, double max) { - double range = (max - min); - double div = RAND_MAX / range; - return min + (rand() / div); + return min + (rand() / (RAND_MAX / (max - min))); } diff --git a/test/jacobi.t.c b/test/jacobi.t.c index dc13d6e..94ed53a 100644 --- a/test/jacobi.t.c +++ b/test/jacobi.t.c @@ -1,4 +1,5 @@ #include "lizfcm.test.h" +#include #include Matrix_double *generate_ddm(size_t n) { @@ -31,3 +32,62 @@ UTEST(jacobi, jacobi_solve) { free_vector(b); free_vector(solution); } + +UTEST(jacobi, gauss_siedel_solve) { + Matrix_double *m = generate_ddm(2); + + Array_double *b_1 = InitArrayWithSize(double, m->rows, 1.0); + Array_double *b = m_dot_v(m, b_1); + + double tolerance = 0.001; + size_t max_iter = 400; + Array_double *solution = gauss_siedel_solve(m, b, tolerance, max_iter); + + for (size_t y = 0; y < m->rows; y++) { + double dot = v_dot_v(m->data[y], solution); + EXPECT_NEAR(b->data[y], dot, 0.1); + } + + free_matrix(m); + free_vector(b_1); + free_vector(b); + free_vector(solution); +} + +UTEST(jacobi, leslie_solve) { + Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8}); + Array_double *survivor_ratios = InitArray(double, {0.8, 0.55}); + Matrix_double *leslie = leslie_matrix(survivor_ratios, felicity); + + Array_double *initial_pop = InitArray(double, {10.0, 20.0, 15.0}); + Array_double *next = m_dot_v(leslie, initial_pop); + + Matrix_double *augmented = add_column(leslie, next); + Matrix_double *leslie_augmented_echelon = gaussian_elimination(augmented); + + Array_double *next_echelon = + col_v(leslie_augmented_echelon, leslie_augmented_echelon->cols - 1); + Matrix_double *leslie_echelon = slice_column( + leslie_augmented_echelon, leslie_augmented_echelon->cols - 1); + + double tolerance = 0.001; + size_t max_iter = 400; + Array_double *initial_pop_guess = + jacobi_solve(leslie_echelon, next_echelon, tolerance, max_iter); + + for (size_t y = 0; y < initial_pop->size; y++) { + EXPECT_NEAR(initial_pop_guess->data[y], initial_pop->data[y], 0.05); + } + + free_matrix(leslie); + free_matrix(augmented); + free_matrix(leslie_augmented_echelon); + free_matrix(leslie_echelon); + + free_vector(felicity); + free_vector(survivor_ratios); + free_vector(next); + free_vector(next_echelon); + free_vector(initial_pop); + free_vector(initial_pop_guess); +}