Homework 5

Elizabeth Hunt

November 1, 2023

1 Question One

See LIZFCM \rightarrow Matrix Routines \rightarrow lu decomp & bsubst.

The test UTEST(matrix, lu_decomp) is a unit test for the lu_decomp routine, and UTEST(matrix, bsubst) verifies back substitution on an upper triangular 3×3 matrix with a known solution that can be verified manually.

Both can be found in tests/matrix.t.c.

2 Question Two

Unless the following are met, the resulting solution will be garbage.

- 1. The matrix U must be not be singular.
- 2. U must be square (or it will fail the assert).
- 3. The system created by Ux = b must be consistent.
- 4. U is (quite obviously) in upper-triangular form.

Thus, the actual calculation performing the LU decomposition (in lu_decomp) does a sanity check for 1-3 will fail an assert, should a point along the diagonal (pivot) be zero, or the matrix be non-factorable.

3 Question Three

See LIZFCM \rightarrow Matrix Routines $\rightarrow \texttt{fsubst}$.

UTEST(matrix, fsubst) verifies forward substitution on a lower triangular 3×3 matrix with a known solution that can be verified manually.

4 Question Four

 $See \ LIZFCM \rightarrow Matrix \ Routines \rightarrow \texttt{gaussian_elimination} \ and \ \texttt{solve_gaussian_elimination}.$

5 Question Five

See LIZFCM \rightarrow Matrix Routines \rightarrow m_dot_v, and the UTEST(matrix, m_dot_v) in tests/matrix.t.c.

6 Question Six

See UTEST(matrix, solve_gaussian_elimination) in tests/matrix.t.c, which generates a diagonally dominant 10×10 matrix and shows that the solution is consistent with the initial matrix, according to the steps given. Then, we do a dot product between each row of the diagonally dominant matrix and the solution vector to ensure it is near equivalent to the input vector.

7 Question Seven

See UTEST(matrix, solve_matrix_lu_bsubst) which does the same test in Question Six with the solution according to solve_matrix_lu_bsubst as shown in the Software Manual.

8 Question Eight

No, since the time complexity for Gaussian Elimination is always less than that of the LU factorization solution by $O(n^2)$ operations (in LU factorization we perform both backwards and forwards substitutions proceeding the LU decomp, in Gaussian Elimination we only need back substitution).

9 Question Nine, Ten

See LIZFCM Software manual and shared library in dist after compiling.