Homework 7

Elizabeth Hunt

November 27, 2023

1 Question One

See UTEST(eigen, dominant_eigenvalue) in test/eigen.t.c and the entry Eigen-Adjacent -> dominant_eigenvalue in the LIZFCM API documentation.

2 Question Two

See UTEST(eigen, leslie_matrix_dominant_eigenvalue) in test/eigen.t.c and the entry Eigen-Adjacent -> leslie_matrix in the LIZFCM API documentation.

3 Question Three

See UTEST(eigen, least_dominant_eigenvalue) in test/eigen.t.c which finds the least dominant eigenvalue on the matrix:

- $\begin{bmatrix} 2 & 2 & 4 \end{bmatrix}$
- 1 4 7
- $\begin{bmatrix} 1 & 4 & 7 \\ 0 & 2 & 6 \end{bmatrix}$

which has eigenvalues: $5 + \sqrt{17}$, 2 , $5 -$ √ 17 and should thus produce 5 − √ 17.

See also the entry Eigen-Adjacent -> least_dominant_eigenvalue in the LIZFCM API documentation.

4 Question Four

See UTEST(eigen, shifted_eigenvalue) in test/eigen.t.c which finds the least dominant eigenvalue on the matrix:

 $\begin{bmatrix} 2 & 2 & 4 \end{bmatrix}$ 1 4 7

 $\begin{vmatrix} 1 & 4 & 1 \\ 0 & 2 & 6 \end{vmatrix}$

which has eigenvalues: $5 + \sqrt{17}$, 2 , $5 -$ √ 17 and should thus produce 2.0. With the initial guess: [0.5, 1.0, 0.75].

See also the entry Eigen-Adjacent -> shift_inverse_power_eigenvalue in the LIZFCM API documentation.

5 Question Five

See UTEST(eigen, partition_find_eigenvalues) in test/eigen.t.c which finds the eigenvalues in a partition of 10 on the matrix:

 $\begin{bmatrix} 2 & 2 & 4 \end{bmatrix}$ $\begin{bmatrix} 1 & 4 & 7 \\ 0 & 2 & 6 \end{bmatrix}$ 1 4 7

which has eigenvalues: $5 + \sqrt{17}, 2, 5 -$ √ 17, and should produce all three from the partitions when given the guesses $[0.5, 1.0, 0.75]$ from the questions above. See also the entry Eigen-Adjacent -> partition_find_eigenvalues in the LIZFCM API documentation.

6 Question Six

Consider we have the results of two methods developed in this homework: least_dominant_eigenvalue, and dominant_eigenvalue into lambda_0, lambda_n, respectively. Also assume that we have the method implemented as we've introduced, shift_inverse_power_eigenvalue. Then, we begin at the midpoint of lambda_0 and lambda_n, and compute the new_lambda = shift_inverse_power_eigenvalue with a shift at the midpoint, and some given initial guess.

- 1. If the result is equal (or within some tolerance) to lambda_n then the closest eigenvalue to the midpoint is still the dominant eigenvalue, and thus the next most dominant will be on the left. Set lambda_n to the midpoint and reiterate.
- 2. If the result is greater or equal to lambda_0 we know an eigenvalue of greater or equal magnitude exists on the right. So, we set lambda_0 to this eigenvalue associated with the midpoint, and re-iterate.
- 3. Continue re-iterating until we hit some given maximum number of iterations. Finally we will return new_lambda.