#include "lizfcm.test.h" UTEST(matrix, free) { Matrix_double *m = InitMatrixWithSize(double, 8, 8, 0.0); uint64_t data_addr = (uint64_t)(m->data); free_matrix(m); EXPECT_NE(data_addr, (uint64_t)(m->data)); } UTEST(matrix, add_column) { Matrix_double *m = InitMatrixWithSize(double, 5, 5, 0.0); Array_double *col = InitArray(double, {1.0, 2.0, 3.0, 4.0, 5.0}); Matrix_double *new_m = add_column(m, col); for (size_t row = 0; row < m->rows; row++) EXPECT_EQ(new_m->data[row]->data[m->cols], col->data[row]); EXPECT_EQ(new_m->cols, m->cols + 1); free_matrix(m); free_matrix(new_m); free_vector(col); } UTEST(matrix, slice_column) { size_t slice = 1; Matrix_double *m = InitMatrixWithSize(double, 5, 5, 1.0 * (rand() % 10)); Matrix_double *new_m = slice_column(m, slice); for (size_t row = 0; row < m->rows; row++) { Array_double *sliced_row = slice_element(m->data[row], slice); EXPECT_TRUE(vector_equal(new_m->data[row], sliced_row)); free_vector(sliced_row); } EXPECT_EQ(new_m->cols, m->cols - 1); free_matrix(m); free_matrix(new_m); } UTEST(matrix, put_identity_diagonal) { Matrix_double *m = InitMatrixWithSize(double, 8, 8, 0.0); Matrix_double *ident = put_identity_diagonal(m); for (size_t y = 0; y < m->rows; ++y) for (size_t x = 0; x < m->cols; ++x) EXPECT_EQ(ident->data[y]->data[x], x == y ? 1.0 : 0.0); free_matrix(m); free_matrix(ident); } UTEST(matrix, copy) { Matrix_double *m = InitMatrixWithSize(double, 8, 8, 0.0); Matrix_double *ident = put_identity_diagonal(m); Matrix_double *copy = copy_matrix(ident); EXPECT_TRUE(matrix_equal(ident, copy)); free_matrix(m); free_matrix(ident); free_matrix(copy); } UTEST(matrix, m_dot_v) { Matrix_double *m = InitMatrixWithSize(double, 8, 8, 0.0); Matrix_double *ident = put_identity_diagonal(m); Array_double *x = InitArray(double, {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0}); Array_double *dotted = m_dot_v(ident, x); EXPECT_TRUE(vector_equal(dotted, x)); free_matrix(m); free_matrix(ident); free_vector(x); free_vector(dotted); } UTEST(matrix, bsubst) { Matrix_double *u = InitMatrixWithSize(double, 3, 3, 0.0); u->data[0]->data[0] = 1.0; u->data[0]->data[1] = 2.0; u->data[0]->data[2] = 3.0; u->data[1]->data[1] = 4.0; u->data[1]->data[2] = 5.0; u->data[2]->data[2] = 6.0; Array_double *b = InitArray(double, {14.0, 29.0, 30.0}); Array_double *solution = bsubst(u, b); EXPECT_NEAR(solution->data[0], -3.0, 0.0001); EXPECT_NEAR(solution->data[1], 1.0, 0.0001); EXPECT_NEAR(solution->data[2], 5.0, 0.0001); free_matrix(u); free_vector(b); free_vector(solution); } UTEST(matrix, fsubst) { Matrix_double *l = InitMatrixWithSize(double, 3, 3, 0.0); l->data[0]->data[0] = 1.0; l->data[1]->data[0] = 2.0; l->data[1]->data[1] = 3.0; l->data[2]->data[0] = 4.0; l->data[2]->data[1] = 5.0; l->data[2]->data[2] = 6.0; Array_double *b = InitArray(double, {14.0, 13.0, 32.0}); Array_double *solution = fsubst(l, b); EXPECT_NEAR(solution->data[0], 14.0, 0.0001); EXPECT_NEAR(solution->data[1], -5.0, 0.0001); EXPECT_NEAR(solution->data[2], 0.16667, 0.0001); free_matrix(l); free_vector(b); free_vector(solution); } UTEST(matrix, lu_decomp) { Matrix_double *m = InitMatrixWithSize(double, 10, 10, 0.0); for (size_t y = 0; y < m->rows; ++y) { for (size_t x = 0; x < m->cols; ++x) m->data[y]->data[x] = x == y ? 20.0 : (100.0 - rand() % 100) / 100.0; } Matrix_double **ul = lu_decomp(m); Matrix_double *u = ul[0]; Matrix_double *l = ul[1]; for (int y = 0; y < m->rows; y++) { for (size_t x = 0; x < c_max(y - 1, 0); x++) { double u_yx = u->data[y]->data[x]; EXPECT_NEAR(u_yx, 0.0, 0.0001); } for (size_t x = c_min(m->cols, y + 1); x < m->cols; ++x) { double l_yx = l->data[y]->data[x]; EXPECT_NEAR(l_yx, 0.0, 0.0001); } } free_matrix(m); free_matrix(l); free_matrix(u); free(ul); } UTEST(matrix, solve_gaussian_elimination) { Matrix_double *m = InitMatrixWithSize(double, 10, 10, 0.0); for (size_t y = 0; y < m->rows; ++y) { for (size_t x = 0; x < m->cols; ++x) m->data[y]->data[x] = x == y ? 20.0 : (100.0 - rand() % 100) / 100.0; } Array_double *b_1 = InitArrayWithSize(double, m->rows, 1.0); Array_double *b = m_dot_v(m, b_1); Array_double *solution = solve_matrix_gaussian(m, b); for (size_t y = 0; y < m->rows; y++) { double dot = v_dot_v(m->data[y], solution); EXPECT_NEAR(b->data[y], dot, 0.0001); } free_vector(b_1); free_matrix(m); free_vector(b); free_vector(solution); } UTEST(matrix, solve_matrix_lu_bsubst) { Matrix_double *m = InitMatrixWithSize(double, 10, 10, 0.0); for (size_t y = 0; y < m->rows; ++y) { for (size_t x = 0; x < m->cols; ++x) m->data[y]->data[x] = x == y ? 20.0 : (100.0 - rand() % 100) / 100.0; } Array_double *b_1 = InitArrayWithSize(double, m->rows, 1.0); Array_double *b = m_dot_v(m, b_1); Array_double *solution = solve_matrix_lu_bsubst(m, b); for (size_t y = 0; y < m->rows; y++) { double dot = v_dot_v(m->data[y], solution); EXPECT_NEAR(b->data[y], dot, 0.0001); } free_matrix(m); free_vector(b); free_vector(b_1); free_vector(solution); } UTEST(matrix, col_v) { Matrix_double *m = InitMatrixWithSize(double, 2, 3, 0.0); // set element to its column index for (size_t y = 0; y < m->rows; y++) { for (size_t x = 0; x < m->cols; x++) { m->data[y]->data[x] = x; } } Array_double *col, *expected; for (size_t x = 0; x < m->cols; x++) { col = col_v(m, x); expected = InitArrayWithSize(double, m->rows, (double)x); EXPECT_TRUE(vector_equal(expected, col)); free_vector(col); free_vector(expected); } free_matrix(m); } UTEST(matrix, m_dot_m) { Matrix_double *a = InitMatrixWithSize(double, 1, 3, 12.0); Matrix_double *b = InitMatrixWithSize(double, 3, 1, 10.0); Matrix_double *prod = m_dot_m(a, b); EXPECT_EQ(prod->cols, 1); EXPECT_EQ(prod->rows, 1); EXPECT_EQ(12.0 * 10.0 * 3, prod->data[0]->data[0]); free_matrix(a); free_matrix(b); free_matrix(prod); } UTEST(matrix, transpose) { Matrix_double *a = InitMatrixWithSize(double, 1, 3, 12.0); a->data[0]->data[1] = 13.0; Matrix_double *b = InitMatrixWithSize(double, 3, 1, 12.0); b->data[1]->data[0] = 13.0; Matrix_double *a_t = transpose(a); EXPECT_TRUE(matrix_equal(a_t, b)); free_matrix(a_t); free_matrix(a); free_matrix(b); }