#+TITLE: Homework 6 #+AUTHOR: Elizabeth Hunt #+LATEX_HEADER: \notindent \notag \usepackage{amsmath} \usepackage[a4paper,margin=1in,portrait]{geometry} #+LATEX: \setlength\parindent{0pt} #+OPTIONS: toc:nil * Question One For $g(x) = x + f(x)$ then we know $g'(x) = 1 + 2x - 5$ and thus $|g'(x)| \lt 1$ is only true on the interval $(1.5, 2.5)$, and for $g(x) = x - f(x)$ then we know $g'(x) = 1 - (2x - 5)$ and thus $|g'(x)| < 1$ is only true on the interval $(2.5, 3.5)$. Because we know the roots of $f$ are $2, 3$ ($f(x) = (x-2)(x-3)$) then we can only be certain that $g(x) = x + f(x)$ will converge to the root $2$ if we pick an initial guess between $(1.5, 2.5)$, and likewise for $g(x) = x - f(x)$, $3$: #+BEGIN_SRC c // tests/roots.t.c UTEST(root, fixed_point_iteration_method) { // x^2 - 5x + 6 = (x - 3)(x - 2) double expect_x1 = 3.0; double expect_x2 = 2.0; double tolerance = 0.001; uint64_t max_iterations = 10; double x_0 = 1.55; // 1.5 < 1.55 < 2.5 // g1(x) = x + f(x) double root1 = fixed_point_iteration_method(&f2, &g1, x_0, tolerance, max_iterations); EXPECT_NEAR(root1, expect_x2, tolerance); // g2(x) = x - f(x) x_0 = 3.4; // 2.5 < 3.4 < 3.5 double root2 = fixed_point_iteration_method(&f2, &g2, x_0, tolerance, max_iterations); EXPECT_NEAR(root2, expect_x1, tolerance); } #+END_SRC And by this method passing in ~tests/roots.t.c~ we know they converged within ~tolerance~ before 10 iterations. * Question Two Yes, we showed that for $\epsilon = 1$ in Question One, we can converge upon a root in the range $(2.5, 3.5)$, and when $\epsilon = -1$ we can converge upon a root in the range $(1.5, 2.5)$. See the above unit tests in Question One for each $\epsilon$. * Question Three See ~test/roots.t.c -> UTEST(root, bisection_with_error_assumption)~ and the software manual entry ~bisect_find_root_with_error_assumption~. * Question Four See ~test/roots.t.c -> UTEST(root, fixed_point_newton_method)~ and the software manual entry ~fixed_point_newton_method~. * Question Five See ~test/roots.t.c -> UTEST(root, fixed_point_secant_method)~ and the software manual entry ~fixed_point_secant_method~. * Question Six See ~test/roots.t.c -> UTEST(root, fixed_point_bisection_secant_method)~ and the software manual entry ~fixed_point_bisection_secant_method~. * Question Seven The existance of ~test/roots.t.c~'s compilation into ~dist/lizfcm.test~ via ~make~ shows that the compiled ~lizfcm.a~ contains the root methods mentioned; a user could link the library and use them, as we do in Question Eight. * Question Eight The given ODE $\frac{dP}{dt} = \alpha P - \beta P$ has a trivial solution by separation: \begin{equation*} P(t) = C e^{t(\alpha - \beta)} \end{equation*} And \begin{equation*} P_0 = P(0) = C e^0 = C \end{equation*} So $P(t) = P_0 e^{t(\alpha - \beta)}$. We're trying to find $t$ such that $P(t) = P_\infty$, thus we're finding roots of $P(t) - P_\infty$. The following code (in ~homeworks/hw_6_p_8.c~) produces this output: \begin{verbatim} $ gcc -I../inc/ -Wall hw_6_p_8.c ../lib/lizfcm.a -lm -o hw_6_p_8 && ./hw_6_p_8 a ~ 27.269515; P(27.269515) - P_infty = -0.000000 b ~ 40.957816; P(40.957816) - P_infty = -0.000000 c ~ 40.588827; P(40.588827) - P_infty = -0.000000 d ~ 483.611967; P(483.611967) - P_infty = -0.000000 e ~ 4.894274; P(4.894274) - P_infty = -0.000000 \end{verbatim} #+BEGIN_SRC c // compile & test w/ // \--> gcc -I../inc/ -Wall hw_6_p_8.c ../lib/lizfcm.a -lm -o hw_6_p_8 // \--> ./hw_6_p_8 #include "lizfcm.h" #include #include double a(double t) { double alpha = 0.1; double beta = 0.001; double p_0 = 2; double p_infty = 29.75; return p_0 * exp(t * (alpha - beta)) - p_infty; } double b(double t) { double alpha = 0.1; double beta = 0.001; double p_0 = 2; double p_infty = 115.35; return p_0 * exp(t * (alpha - beta)) - p_infty; } double c(double t) { double alpha = 0.1; double beta = 0.0001; double p_0 = 2; double p_infty = 115.35; return p_0 * exp(t * (alpha - beta)) - p_infty; } double d(double t) { double alpha = 0.01; double beta = 0.001; double p_0 = 2; double p_infty = 155.346; return p_0 * exp(t * (alpha - beta)) - p_infty; } double e(double t) { double alpha = 0.1; double beta = 0.01; double p_0 = 100; double p_infty = 155.346; return p_0 * exp(t * (alpha - beta)) - p_infty; } int main() { uint64_t max_iterations = 1000; double tolerance = 0.0000001; Array_double *ivt_range = find_ivt_range(&a, -5.0, 3.0, 1000); double approx_a = fixed_point_secant_bisection_method( &a, ivt_range->data[0], ivt_range->data[1], tolerance, max_iterations); free_vector(ivt_range); ivt_range = find_ivt_range(&b, -5.0, 3.0, 1000); double approx_b = fixed_point_secant_bisection_method( &b, ivt_range->data[0], ivt_range->data[1], tolerance, max_iterations); free_vector(ivt_range); ivt_range = find_ivt_range(&c, -5.0, 3.0, 1000); double approx_c = fixed_point_secant_bisection_method( &c, ivt_range->data[0], ivt_range->data[1], tolerance, max_iterations); free_vector(ivt_range); ivt_range = find_ivt_range(&d, -5.0, 3.0, 1000); double approx_d = fixed_point_secant_bisection_method( &d, ivt_range->data[0], ivt_range->data[1], tolerance, max_iterations); free_vector(ivt_range); ivt_range = find_ivt_range(&e, -5.0, 3.0, 1000); double approx_e = fixed_point_secant_bisection_method( &e, ivt_range->data[0], ivt_range->data[1], tolerance, max_iterations); printf("a ~ %f; P(%f) = %f\n", approx_a, approx_a, a(approx_a)); printf("b ~ %f; P(%f) = %f\n", approx_b, approx_b, b(approx_b)); printf("c ~ %f; P(%f) = %f\n", approx_c, approx_c, c(approx_c)); printf("d ~ %f; P(%f) = %f\n", approx_d, approx_d, d(approx_d)); printf("e ~ %f; P(%f) = %f\n", approx_e, approx_e, e(approx_e)); return 0; } #+END_SRC