#+TITLE: Homework 6 #+AUTHOR: Elizabeth Hunt #+LATEX_HEADER: \notindent \notag \usepackage{amsmath} \usepackage[a4paper,margin=1in,portrait]{geometry} #+LATEX: \setlength\parindent{0pt} #+OPTIONS: toc:nil * Question One See ~UTEST(eigen, dominant_eigenvalue)~ in ~test/eigen.t.c~ and the entry ~Eigen-Adjacent -> dominant_eigenvalue~ in the LIZFCM API documentation. * Question Two See ~UTEST(eigen, leslie_matrix_dominant_eigenvalue)~ in ~test/eigen.t.c~ and the entry ~Eigen-Adjacent -> leslie_matrix~ in the LIZFCM API documentation. * Question Three See ~UTEST(eigen, least_dominant_eigenvalue)~ in ~test/eigen.t.c~ which finds the least dominant eigenvalue on the matrix: \begin{bmatrix} 2 & 2 & 4 \\ 1 & 4 & 7 \\ 0 & 2 & 6 \end{bmatrix} which has eigenvalues: $5 + \sqrt{17}, 2, 5 - \sqrt{17}$ and should thus produce $5 - \sqrt{17}$. See also the entry ~Eigen-Adjacent -> least_dominant_eigenvalue~ in the LIZFCM API documentation. * Question Four See ~UTEST(eigen, shifted_eigenvalue)~ in ~test/eigen.t.c~ which finds the least dominant eigenvalue on the matrix: \begin{bmatrix} 2 & 2 & 4 \\ 1 & 4 & 7 \\ 0 & 2 & 6 \end{bmatrix} which has eigenvalues: $5 + \sqrt{17}, 2, 5 - \sqrt{17}$ and should thus produce $2.0$. With the initial guess: $[0.5, 1.0, 0.75]$. See also the entry ~Eigen-Adjacent -> shift_inverse_power_eigenvalue~ in the LIZFCM API documentation. * Question Five See ~UTEST(eigen, partition_find_eigenvalues)~ in ~test/eigen.t.c~ which finds the eigenvalues in a partition of 10 on the matrix: \begin{bmatrix} 2 & 2 & 4 \\ 1 & 4 & 7 \\ 0 & 2 & 6 \end{bmatrix} which has eigenvalues: $5 + \sqrt{17}, 2, 5 - \sqrt{17}$, and should produce all three from the partitions when given the guesses $[0.5, 1.0, 0.75]$ from the questions above. See also the entry ~Eigen-Adjacent -> partition_find_eigenvalues~ in the LIZFCM API documentation. * Question Six