#include "lizfcm.h" #include #include #include #include Matrix_double *leslie_matrix(Array_double *age_class_surivor_ratio, Array_double *age_class_offspring) { assert(age_class_surivor_ratio->size + 1 == age_class_offspring->size); Matrix_double *leslie = InitMatrixWithSize(double, age_class_offspring->size, age_class_offspring->size, 0.0); free_vector(leslie->data[0]); leslie->data[0] = copy_vector(age_class_offspring); for (size_t i = 0; i < age_class_surivor_ratio->size; i++) leslie->data[i + 1]->data[i] = age_class_surivor_ratio->data[i]; return leslie; } double dominant_eigenvalue(Matrix_double *m, Array_double *v, double tolerance, size_t max_iterations) { assert(m->rows == m->cols); assert(m->rows == v->size); double error = tolerance; size_t iter = max_iterations; double lambda = 0.0; Array_double *eigenvector_1 = copy_vector(v); while (error >= tolerance && (--iter) > 0) { Array_double *eigenvector_2 = m_dot_v(m, eigenvector_1); Array_double *normalized_eigenvector_2 = scale_v(eigenvector_2, 1.0 / linf_norm(eigenvector_2)); free_vector(eigenvector_2); eigenvector_2 = normalized_eigenvector_2; Array_double *mx = m_dot_v(m, eigenvector_2); double new_lambda = v_dot_v(mx, eigenvector_2) / v_dot_v(eigenvector_2, eigenvector_2); error = fabs(new_lambda - lambda); lambda = new_lambda; free_vector(eigenvector_1); eigenvector_1 = eigenvector_2; } return lambda; } double shift_inverse_power_eigenvalue(Matrix_double *m, Array_double *v, double shift, double tolerance, size_t max_iterations) { assert(m->rows == m->cols); assert(m->rows == v->size); Matrix_double *m_c = copy_matrix(m); for (size_t y = 0; y < m_c->rows; ++y) m_c->data[y]->data[y] = m_c->data[y]->data[y] - shift; double error = tolerance; size_t iter = max_iterations; double lambda = shift; Array_double *eigenvector_1 = copy_vector(v); while (error >= tolerance && (--iter) > 0) { Array_double *eigenvector_2 = solve_matrix_lu_bsubst(m_c, eigenvector_1); Array_double *normalized_eigenvector_2 = scale_v(eigenvector_2, 1.0 / linf_norm(eigenvector_2)); free_vector(eigenvector_2); Array_double *mx = m_dot_v(m, normalized_eigenvector_2); double new_lambda = v_dot_v(mx, normalized_eigenvector_2) / v_dot_v(normalized_eigenvector_2, normalized_eigenvector_2); error = fabs(new_lambda - lambda); lambda = new_lambda; free_vector(eigenvector_1); eigenvector_1 = normalized_eigenvector_2; } return lambda; } Array_double *partition_find_eigenvalues(Matrix_double *m, Matrix_double *guesses, double tolerance, size_t max_iterations) { assert(guesses->rows >= 2); // we need at least, the most and least dominant eigenvalues double end = dominant_eigenvalue(m, guesses->data[guesses->rows - 1], tolerance, max_iterations); double begin = least_dominant_eigenvalue(m, guesses->data[0], tolerance, max_iterations); double delta = (end - begin) / guesses->rows; Array_double *eigenvalues = InitArrayWithSize(double, guesses->rows, 0.0); for (size_t i = 0; i < guesses->rows; i++) { double box_midpoint = ((delta * i) + (delta * (i + 1))) / 2; double nearest_eigenvalue = shift_inverse_power_eigenvalue( m, guesses->data[i], box_midpoint, tolerance, max_iterations); eigenvalues->data[i] = nearest_eigenvalue; } return eigenvalues; } double least_dominant_eigenvalue(Matrix_double *m, Array_double *v, double tolerance, size_t max_iterations) { return shift_inverse_power_eigenvalue(m, v, 0.0, tolerance, max_iterations); }