#+TITLE: Errors #+AUTHOR: Elizabeth Hunt #+STARTUP: entitiespretty fold inlineimages #+LATEX_HEADER: \notindent \notag \usepackage{amsmath} \usepackage[a4paper,margin=1in,landscape]{geometry} #+LATEX: \setlength\parindent{0pt} #+OPTIONS: toc:nil * Errors $x,y \in \mathds{R}$, using y as a way to approximate x. Then the absolute error of in approximating x w/ y is $e_{abs}(x, y) = |x-y|$. and the relative error is $e_{rel}(x, y) = \frac{|x-y|}{|x|}$ Table of Errors #+BEGIN_SRC lisp :results table (load "../cl/lizfcm.asd") (ql:quickload 'lizfcm) (defun eabs (x y) (abs (- x y))) (defun erel (x y) (/ (abs (- x y)) (abs x))) (defparameter *u-v* '( (1 0.99) (1 1.01) (-1.5 -1.2) (100 99.9) (100 99) )) (lizfcm.utils:table (:headers '("u" "v" "e_{abs}" "e_{rel}") :domain-order (u v) :domain-values *u-v*) (eabs u v) (erel u v)) #+END_SRC #+RESULTS: | u | v | e_{abs} | e_{rel} | | 1 | 0.99 | 0.00999999 | 0.00999999 | | 1 | 1.01 | 0.00999999 | 0.00999999 | | -1.5 | -1.2 | 0.29999995 | 0.19999997 | | 100 | 99.9 | 0.099998474 | 0.0009999848 | | 100 | 99 | 1 | 1/100 | Look at $u \approx 0$ then $v \approx 0$, $e_{abs}$ is better error since $e_{rel}$ is high. * Vector spaces & measures Suppose we want solutions fo a linear system of the form $Ax = b$, and we want to approximate $x$, we need to find a form of "distance" between vectors in $\mathds{R}^n$ ** Vector Distances A norm on a vector space $|| v ||$ is a function from $\mathds{R}^n$ such that: 1. $||v|| \geq 0$ for all $v \in \mathds{R}^n$ and $||v|| = \Leftrightarrow v = 0$ 2. $||cv|| = |c| ||v||$ for all $c \in \mathds{R}, v \in \mathds{R}^n$ 3. $||x + y|| \leq ||x|| + ||y|| \forall x,y \in \mathds{R}^n$ *** Example norms: $||v||_2 = || [v_1, v_2, \dots v_n] || = (v_1^2 + v_2^2 + \dots + v_n^2)^{}^{\frac{1}{2}}$ $||v||_1 = |v_1| + |v_2| + \dots + |v_n|$ $||v||_{\infty} = \text{max}(|v_i|)$ (most restriction) p-norm: $||v||_p = \sum_{i=1}^{h} (|v_i|^p)^{\frac{1}{p}}$ ** Length The length of a vector in a given norm is $||v|| \forall v \in \mathds{R}^n$ All norms on finite dimensional vectors are equivalent. Then exist constants $\alpha, \beta > 0 \ni \alpha ||v||_p \leq ||v||_q \leq \beta||v||_p$ ** Distance Let $u,v$ be vectors in $\mathds{R}^n$ then the distance is $||u - v||$ by some norm: $e_{abs} = d(v, u) = ||u - v||$ The relative errors is: $e_{rel} = \frac{||u - v||}{||v||}$ ** Approxmiating Solutions to $Ax = b$ We define the residual vector $r(x) = b - Ax$ If $x$ is the exact solution, then $r(x) = 0$. Then we can measure the "correctness" of the approximated solution on the norm of the residual. We want to minimize the norm. But, $r(y) = b - Ay \approx 0 \nRightarrow y \equiv x$, if $A$ is not invertible.