#include "lizfcm.test.h" Matrix_double *eigen_test_matrix() { // produces a matrix that has eigenvalues [5 + sqrt{17}, 2, 5 - sqrt{17}] Matrix_double *m = InitMatrixWithSize(double, 3, 3, 0.0); m->data[0]->data[0] = 2.0; m->data[0]->data[1] = 2.0; m->data[0]->data[2] = 4.0; m->data[1]->data[0] = 1.0; m->data[1]->data[1] = 4.0; m->data[1]->data[2] = 7.0; m->data[2]->data[1] = 2.0; m->data[2]->data[2] = 6.0; return m; } UTEST(eigen, least_dominant_eigenvalue) { Matrix_double *m = eigen_test_matrix(); double expected_least_dominant_eigenvalue = 0.87689; // 5 - sqrt(17) double tolerance = 0.0001; uint64_t max_iterations = 64; Array_double *v_guess = InitArrayWithSize(double, 3, 1.0); double approx_least_dominant_eigenvalue = least_dominant_eigenvalue(m, v_guess, tolerance, max_iterations); EXPECT_NEAR(expected_least_dominant_eigenvalue, approx_least_dominant_eigenvalue, tolerance); } UTEST(eigen, dominant_eigenvalue) { Matrix_double *m = InitMatrixWithSize(double, 2, 2, 0.0); m->data[0]->data[0] = 2.0; m->data[0]->data[1] = -12.0; m->data[1]->data[0] = 1.0; m->data[1]->data[1] = -5.0; Array_double *v_guess = InitArrayWithSize(double, 2, 1.0); double tolerance = 0.0001; uint64_t max_iterations = 64; double expect_dominant_eigenvalue = -2.0; double approx_dominant_eigenvalue = dominant_eigenvalue(m, v_guess, tolerance, max_iterations); EXPECT_NEAR(expect_dominant_eigenvalue, approx_dominant_eigenvalue, tolerance); free_matrix(m); free_vector(v_guess); } UTEST(eigen, shifted_eigenvalue) { Matrix_double *m = eigen_test_matrix(); double least_dominant_eigenvalue = 0.87689; // 5 - sqrt{17} double dominant_eigenvalue = 9.12311; // 5 + sqrt{17} double expected_middle_eigenvalue = 2.0; double shift = (dominant_eigenvalue + least_dominant_eigenvalue) / 2.0; double tolerance = 0.0001; uint64_t max_iterations = 64; Array_double *v_guess = InitArray(double, {0.5, 1.0, 0.75}); double approx_middle_eigenvalue = shift_inverse_power_eigenvalue( m, v_guess, shift, tolerance, max_iterations); EXPECT_NEAR(approx_middle_eigenvalue, expected_middle_eigenvalue, tolerance); } UTEST(eigen, leslie_matrix_dominant_eigenvalue) { Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8}); Array_double *survivor_ratios = InitArray(double, {0.8, 0.55}); Matrix_double *leslie = leslie_matrix(survivor_ratios, felicity); Array_double *v_guess = InitArrayWithSize(double, 3, 2.0); double tolerance = 0.0001; uint64_t max_iterations = 64; double expect_dominant_eigenvalue = 1.22005; double approx_dominant_eigenvalue = dominant_eigenvalue(leslie, v_guess, tolerance, max_iterations); EXPECT_NEAR(expect_dominant_eigenvalue, approx_dominant_eigenvalue, tolerance); free_vector(v_guess); free_vector(survivor_ratios); free_vector(felicity); free_matrix(leslie); } UTEST(eigen, leslie_matrix) { Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8}); Array_double *survivor_ratios = InitArray(double, {0.8, 0.55}); Matrix_double *m = InitMatrixWithSize(double, 3, 3, 0.0); m->data[0]->data[0] = 0.0; m->data[0]->data[1] = 1.5; m->data[0]->data[2] = 0.8; m->data[1]->data[0] = 0.8; m->data[2]->data[1] = 0.55; Matrix_double *leslie = leslie_matrix(survivor_ratios, felicity); EXPECT_TRUE(matrix_equal(leslie, m)); free_matrix(leslie); free_matrix(m); free_vector(felicity); free_vector(survivor_ratios); }