% Created 2023-10-07 Sat 14:49 % Intended LaTeX compiler: pdflatex \documentclass[11pt]{article} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{graphicx} \usepackage{longtable} \usepackage{wrapfig} \usepackage{rotating} \usepackage[normalem]{ulem} \usepackage{amsmath} \usepackage{amssymb} \usepackage{capt-of} \usepackage{hyperref} \notindent \notag \usepackage{amsmath} \usepackage[a4paper,margin=1in,portrait]{geometry} \author{Elizabeth Hunt} \date{\today} \title{HW 03} \hypersetup{ pdfauthor={Elizabeth Hunt}, pdftitle={HW 03}, pdfkeywords={}, pdfsubject={}, pdfcreator={Emacs 28.2 (Org mode 9.7-pre)}, pdflang={English}} \begin{document} \maketitle \setlength\parindent{0pt} \section{Question One} \label{sec:org6f2bd27} \subsection{Three Terms} \label{sec:orgeb827ff} \begin{align*} Si_3(x) &= \int_0^x \frac{s - \frac{s^3}{3!} + \frac{s^5}{5!}}{s} dx \\ &= x - \frac{x^3}{(3!)(3)} + \frac{x^5}{(5!)(5)} \end{align*} \subsection{Five Terms} \label{sec:orge6a15e4} \begin{align*} Si_3(x) &= \int_0^x \frac{s - \frac{s^3}{3!} + \frac{s^5}{5!} - \frac{s^7}{7!} + \frac{s^9}{9!}}{s} dx \\ &= x - \frac{x^3}{(3!)(3)} + \frac{x^5}{(5!)(5)} - \frac{x^7}{(7!)(7)} + \frac{s^9}{(9!)(9)} \end{align*} \subsection{Ten Terms} \label{sec:orge87e346} \begin{align*} Si_{10}(x) &= \int_0^x \frac{s - \frac{s^3}{3!} + \frac{s^5}{5!} - \frac{s^7}{7!} + \frac{s^9}{9!} - \frac{s^{11}}{11!} + \frac{s^{13}}{13!} - \frac{s^{15}}{15!} + \frac{s^{17}}{17!} - \frac{s^{19}}{19!}}{s} ds \\ &= x - \frac{x^3}{(3!)(3)} + \frac{x^5}{(5!)(5)} - \frac{x^7}{(7!)(7)} + \frac{s^9}{(9!)(9)} - \frac{s^{11}}{(11!)(11)} + \frac{s^{13}}{(13!)(13)} - \frac{s^{15}}{(15!)(15)} \\ &+ \frac{s^{17}}{(17!)(17)} - \frac{s^{19}}{(19!)(19)} \end{align*} \section{Question Three} \label{sec:org6e2f7fc} For the second term in the difference quotient, we can expand the taylor series centered at x=a: \begin{equation*} f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \cdots \\ \end{equation*} Which we substitute into the difference quotient: \begin{equation*} \frac{f(a) - f(a - h)}{h} = \frac{f(a) - (f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \cdots)}{h} \end{equation*} And subs. \(x=a-h\): \begin{align*} \frac{f(a) - (f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \cdots)}{h} &= -f'(a)(-1) + -\frac{1}{2}f''(a)h \\ &= f'(a) - \frac{1}{2}f''(a)h + \cdots \\ \end{align*} Which we now plug into the initial \(e_{\text{abs}}\): \begin{align*} e_{\text{abs}} &= |f'(a) - \frac{f(a) - f(a - h)}{h}| \\ &= |f'(a) - (f'(a) + -\frac{f''(a)}{2}h + \cdots)| \\ &= |- \frac{1}{2}f''(a)h + \cdots | \\ \end{align*} With the Taylor Remainder theorem we can absorb the series following the second term: \begin{equation*} e_{\text{abs}} = |- \frac{1}{2}f''(a)h + \cdots | = |\frac{1}{2}f''(\xi)h| \leq Ch \end{equation*} Thus our error is bounded linearly with \(h\). \section{Question Four} \label{sec:orga7d02a2} For the first term in the difference quotient we know, from the given notes, \begin{equation*} f(a+h) = f(a) + f'(a)h + \frac{1}{2}f''(a)h^2 + \frac{1}{6}f'''(a)(h^3) \end{equation*} And from some of the work in Question Three, \begin{equation*} f(a - h) = f(a) + f'(a)(-h) + \frac{1}{2}f''(a)(-h)^2 + \frac{1}{6}f'''(a)(-h^3) \end{equation*} We can substitute immediately into \(e_{\text{abs}} = |f'(a) - (\frac{f(a+h) - f(a-h)}{2h})|\): \begin{align*} e_{\text{abs}} &= |f'(a) - \frac{1}{2h}((f(a) + f'(a)h + \frac{1}{2}f''(a)h^2 + \cdots) - (f(a) - f'(a)h + \frac{1}{2}f''(a)h^2 + \cdots))| \\ &= |f'(a) - \frac{1}{2h}(2f'(a)h + \frac{1}{6}f'''(a)h^3 + \cdots)| \\ &= |f'(a) - f'(a) - \frac{1}{12}f'''(a)h^2 + \cdots| \\ &= |-\frac{1}{12}f'''(a)h^2 + \cdots| \end{align*} Finally, with the Taylor Remainder theorem we can absorb the series following the third term: \begin{equation*} e_{\text{abs}} = |-\frac{1}{12}f'''(\xi)h^2| = |\frac{1}{12}f'''(\xi)h^2| \leq Ch^2 \end{equation*} Meaning that as \(h\) scales linearly, our error is bounded by \(h^2\) as opposed to linearly as in Question Three. \section{Question Six} \label{sec:org7b05811} \subsection{A} \label{sec:org8341a77} \begin{verbatim} (load "../lizfcm.asd") (ql:quickload :lizfcm) (defun f (x) (/ (- x 1) (+ x 1))) (defun fprime (x) (/ 2 (expt (+ x 1) 2))) (let ((domain-values (loop for a from 0 to 2 append (loop for i from 0 to 9 for h = (/ 1.0 (expt 2 i)) collect (list a h))))) (lizfcm.utils:table (:headers '("a" "h" "f'" "\\approx f'" "e_{\\text{abs}}") :domain-order (a h) :domain-values domain-values) (fprime a) (lizfcm.approx:fwd-derivative-at 'f a h) (abs (- (fprime a) (lizfcm.approx:fwd-derivative-at 'f a h))))) \end{verbatim} \section{Question Nine} \label{sec:orgeb1839f} \subsection{C} \label{sec:org5691277} \begin{verbatim} (load "../lizfcm.asd") (ql:quickload :lizfcm) (defun factorial (n) (if (= n 0) 1 (* n (factorial (- n 1))))) (defun taylor-term (n x) (/ (* (expt (- 1) n) (expt x (+ (* 2 n) 1))) (* (factorial n) (+ (* 2 n) 1)))) (defun f (x &optional (max-iterations 30)) (let ((sum 0.0)) (dotimes (n max-iterations) (setq sum (+ sum (taylor-term n x)))) (* sum (/ 2 (sqrt pi))))) (defun fprime (x) (* (/ 2 (sqrt pi)) (exp (- 0 (* x x))))) (let ((domain-values (loop for a from 0 to 1 append (loop for i from 0 to 9 for h = (/ 1.0 (expt 2 i)) collect (list a h))))) (lizfcm.utils:table (:headers '("a" "h" "f'" "\\approx f'" "e_{\\text{abs}}") :domain-order (a h) :domain-values domain-values) (fprime a) (lizfcm.approx:central-derivative-at 'f a h) (abs (- (fprime a) (lizfcm.approx:central-derivative-at 'f a h))))) \end{verbatim} \begin{center} \begin{tabular}{rrrrr} a & h & f' & \(\approx\) f' & e\textsubscript{\text{abs}}\\[0pt] 0 & 1.0 & 1.1283791670955126d0 & 0.8427006725464232d0 & 0.28567849454908933d0\\[0pt] 0 & 0.5 & 1.1283791670955126d0 & 1.0409997446922075d0 & 0.0873794224033051d0\\[0pt] 0 & 0.25 & 1.1283791670955126d0 & 1.1053055663206806d0 & 0.023073600774832004d0\\[0pt] 0 & 0.125 & 1.1283791670955126d0 & 1.122529655394656d0 & 0.005849511700856569d0\\[0pt] 0 & 0.0625 & 1.1283791670955126d0 & 1.1269116944798618d0 & 0.0014674726156507223d0\\[0pt] 0 & 0.03125 & 1.1283791670955126d0 & 1.1280120131008824d0 & 3.6715399463016496d-4\\[0pt] 0 & 0.015625 & 1.1283791670955126d0 & 1.1282873617826952d0 & 9.180531281738347d-5\\[0pt] 0 & 0.0078125 & 1.1283791670955126d0 & 1.128356232581468d0 & 2.293451404455915d-5\\[0pt] 0 & 0.00390625 & 1.1283791670955126d0 & 1.1283734502811613d0 & 5.71681435124205d-6\\[0pt] 0 & 0.001953125 & 1.1283791670955126d0 & 1.1283777547060847d0 & 1.4123894278572635d-6\\[0pt] 1 & 1.0 & 0.41510750774498784d0 & 0.4976611317561498d0 & 0.08255362401116195d0\\[0pt] 1 & 0.5 & 0.41510750774498784d0 & 0.44560523266293384d0 & 0.030497724917946d0\\[0pt] 1 & 0.25 & 0.41510750774498784d0 & 0.4234889628937013d0 & 0.008381455148713468d0\\[0pt] 1 & 0.125 & 0.41510750774498784d0 & 0.41725265825950153d0 & 0.002145150514513694d0\\[0pt] 1 & 0.0625 & 0.41510750774498784d0 & 0.41564710776310854d0 & 5.396000181207006d-4\\[0pt] 1 & 0.03125 & 0.41510750774498784d0 & 0.4152414157140871d0 & 1.3390796909928948d-4\\[0pt] 1 & 0.015625 & 0.41510750774498784d0 & 0.41514241394084905d0 & 3.490619586121735d-5\\[0pt] 1 & 0.0078125 & 0.41510750774498784d0 & 0.41510582632900395d0 & 1.6814159838896003d-6\\[0pt] 1 & 0.00390625 & 0.41510750774498784d0 & 0.415092913054238d0 & 1.4594690749825112d-5\\[0pt] 1 & 0.001953125 & 0.41510750774498784d0 & 0.4150670865046777d0 & 4.0421240310117845d-5\\[0pt] \end{tabular} \end{center} \section{Question Twelve} \label{sec:orgc55bfd1} First we'll place a bound on \(h\); looking at a graph of \(f\) it's pretty obvious from the asymptotes that we don't want to go much further than \(|h| = 2 - \frac{pi}{2}\). Following similar reasoning as Question Four, we can determine an optimal \(h\) by computing \(e_{\text{abs}}\) for the central difference, but now including a roundoff error for each time we run \(f\) such that \(|f_{\text{machine}}(x) - f(x)| \le \epsilon_{\text{dblprec}}\) (we'll use double precision numbers, from HW 2 we know \(\epsilon_{\text{dblprec}} \approx 2.22045 (10^{-16})\)). We'll just assume \(|f_{\text{machine}}(x) - f(x)| = \epsilon_{\text{dblprec}}\) so our new difference quotient becomes: \begin{align*} e_{\text{abs}} &= |f'(a) - (\frac{f(a+h) - f(a-h) + 2\epsilon_{\text{dblprec}}}{2h})| \\ &= |\frac{1}{12}f'''(\xi)h^2 + \frac{\epsilon_{\text{dblprec}}}{h}| \end{align*} Because we bounded our \(|h| = 2 - \frac{pi}{2}\) we'll find the maximum value of \(f'''\) between \(a - (2 - \frac{\pi}{2})\) and \(a - (2 - \frac{\pi}{3})\). Using \href{https://www.desmos.com/calculator/gen1zpohh2}{desmos} I found this to be -2. Thus, \(e_{\text{abs}} \leq \frac{1}{6}h^2 + \frac{\epsilon_{\text{dblprec}}}{h}\). Finding the derivative: \begin{equation*} e' = \frac{1}{3}h - \frac{\epsilon_{\text{dblprec}}}{h^2} \end{equation*} And solving at \(e' = 0\): \begin{equation*} \frac{1}{3}h = \frac{\epsilon_{\text{dblprec}}}{h^2} \Rightarrow h^3 = 3\epsilon_{\text{dblprec}} \Rightarrow h = (3\epsilon_{\text{dblprec}})^{1/3} \end{equation*} Which is \(\approx (3(2.22045 (10^{-16}))^{\frac{1}{3}} \approx 8.7335 10^{-6}\). \end{document}