% Created 2023-09-29 Fri 10:00 % Intended LaTeX compiler: pdflatex \documentclass[11pt]{article} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{graphicx} \usepackage{longtable} \usepackage{wrapfig} \usepackage{rotating} \usepackage[normalem]{ulem} \usepackage{amsmath} \usepackage{amssymb} \usepackage{capt-of} \usepackage{hyperref} \author{Elizabeth Hunt} \date{\today} \title{} \hypersetup{ pdfauthor={Elizabeth Hunt}, pdftitle={}, pdfkeywords={}, pdfsubject={}, pdfcreator={Emacs 28.2 (Org mode 9.7-pre)}, pdflang={English}} \begin{document} \tableofcontents \section{Taylor Series Approx.} \label{sec:orgcc72ed1} Suppose f has \(\infty\) many derivatives near a point a. Then the taylor series is given by \(f(x) = \Sigma_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n\) For increment notation we can write \(f(a + h) = f(a) + f'(a)(a+h - a) + \dots\) \(= \Sigma_{n=0}^{\infty} \frac{f^{(n)}(a)}{h!} (h^n)\) Consider the approximation \(e = |f'(a) - \frac{f(a + h) - f(a)}{h}| = |f'(a) - \frac{1}{h}(f(a + h) - f(a))|\) Substituting\ldots{} \(= |f'(a) - \frac{1}{h}((f(a) + f'(a) h + \frac{f''(a)}{2} h^2 + \cdots) - f(a))|\) \(f(a) - f(a) = 0\)\ldots{} and \(distribute the h\) \(= |-1/2 f''(a) h + \frac{1}{6}f'''(a)h^2 \cdots|\) \subsection{With Remainder} \label{sec:org7dfd6c7} We can determine for some u \(f(a + h) = f(a) + f'(a)h + \frac{1}{2}f''(u)h^2\) and so the error is \(e = |f'(a) - \frac{f(a + h) - f(a)}{h}| = |\frac{h}{2}f''(u)|\) \begin{itemize} \item\relax [\url{https://openstax.org/books/calculus-volume-2/pages/6-3-taylor-and-maclaurin-series}] \begin{itemize} \item > Taylor's Theorem w/ Remainder \end{itemize} \end{itemize} \subsection{Of Deriviatives} \label{sec:org1ec7c9b} Again, \(f'(a) \approx \frac{f(a+h) - f(a)}{h}\), \(e = |\frac{1}{2} f''(a) + \frac{1}{3!}h^2 f'''(a) + \cdots\) \(R_2 = \frac{h}{2} f''(u)\) \(|\frac{h}{2} f''(u)| \leq M h^1\) \(M = \frac{1}{2}|f'(u)|\) \subsubsection{Another approximation} \label{sec:org16193b9} \(\text{err} = |f'(a) - \frac{f(a) - f(a - h)}{h}|\) \(= f'(a) - \frac{1}{h}(f(a) - (f(a) + f'(a)(a - (a - h)) + \frac{1}{2}f''(a)(a-(a-h))^2 + \cdots))\) \(= |f'(a) - \frac{1}{h}(f'(a) + \frac{1}{2}f''(a)h)|\) \end{document}