* Taylor Series Approx. Suppose f has $\infty$ many derivatives near a point a. Then the taylor series is given by $f(x) = \Sigma_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n$ For increment notation we can write $f(a + h) = f(a) + f'(a)(a+h - a) + \dots$ $= \Sigma_{n=0}^{\infty} \frac{f^{(n)}(a)}{h!} (h^n)$ Consider the approximation $e = |f'(a) - \frac{f(a + h) - f(a)}{h}| = |f'(a) - \frac{1}{h}(f(a + h) - f(a))|$ Substituting... $= |f'(a) - \frac{1}{h}((f(a) + f'(a) h + \frac{f''(a)}{2} h^2 + \cdots) - f(a))|$ $f(a) - f(a) = 0$... and $distribute the h$ $= |-1/2 f''(a) h + \frac{1}{6}f'''(a)h^2 \cdots|$ ** With Remainder We can determine for some u $f(a + h) = f(a) + f'(a)h + \frac{1}{2}f''(u)h^2$ and so the error is $e = |f'(a) - \frac{f(a + h) - f(a)}{h}| = |\frac{h}{2}f''(u)|$ - [https://openstax.org/books/calculus-volume-2/pages/6-3-taylor-and-maclaurin-series] + > Taylor's Theorem w/ Remainder ** Of Deriviatives Again, $f'(a) \approx \frac{f(a+h) - f(a)}{h}$, $e = |\frac{1}{2} f''(a) + \frac{1}{3!}h^2 f'''(a) + \cdots$ $R_2 = \frac{h}{2} f''(u)$ $|\frac{h}{2} f''(u)| \leq M h^1$ $M = \frac{1}{2}|f'(u)|$ *** Another approximation $\text{err} = |f'(a) - \frac{f(a) - f(a - h)}{h}|$ $= f'(a) - \frac{1}{h}(f(a) - (f(a) + f'(a)(a - (a - h)) + \frac{1}{2}f''(a)(a-(a-h))^2 + \cdots))$ $= |f'(a) - \frac{1}{h}(f'(a) + \frac{1}{2}f''(a)h)|$