#include "lizfcm.h" #include #include #include double f(double x) { return (x - 1) / (x + 1); } int main() { char s[2048]; printf("Basic Routines\n"); printf("smaceps(): %.10e\n", smaceps()); printf("dmaceps(): %.10e\n", dmaceps()); printf("========\n"); printf("Norm, Distance\n"); Array_double *v = InitArray(double, {3, 1, -4, 1, 5, -9, 3}); strcpy(s, ""); format_vector_into(v, s); printf("v: %s", s); Array_double *w = InitArray(double, {-2, 7, 1, -8, -2, 8, 5}); strcpy(s, ""); format_vector_into(w, s); printf("w: %s", s); printf("l1_norm(v): %f\n", l1_norm(v)); printf("l2_norm(v): %f\n", l2_norm(v)); printf("linf_norm(v): %f\n", linf_norm(v)); printf("l1_dist(v, w): %f\n", l1_distance(v, w)); printf("l2_dist(v, w): %f\n", l2_distance(v, w)); printf("linf_dist(v, w): %f\n", linf_distance(v, w)); printf("========\n"); double h = 0.001; printf("Derivative Approxs\n"); printf("f(x) = (x-1)/(x+1)\n"); printf("approx f'(1) w/ c.d.: %f\n", central_derivative_at(&f, 1, h)); printf("approx f'(1) w/ fw.d.: %f\n", forward_derivative_at(&f, 1, h)); printf("approx f'(1) w/ bw.d.: %f\n", backward_derivative_at(&f, 1, h)); printf("========\n"); printf("Least Squares\n"); v = InitArray(double, {1, 2, 3, 4, 5}); strcpy(s, ""); format_vector_into(v, s); printf("v: %s", s); w = InitArray(double, {2, 3, 4, 5, 6}); strcpy(s, ""); format_vector_into(w, s); printf("w: %s", s); Line *line = least_squares_lin_reg(v, w); printf("least_squares_lin_reg(v, w): (%f)x + %f\n", line->m, line->a); v = InitArray(double, {1, 2, 3, 4, 5, 6, 7}); strcpy(s, ""); format_vector_into(v, s); printf("v: %s", s); w = InitArray(double, {0.5, 3, 2, 3.5, 5, 6, 7.5}); strcpy(s, ""); format_vector_into(w, s); printf("w: %s", s); line = least_squares_lin_reg(v, w); printf("least_squares_lin_reg(v, w): (%f)x + %f\n", line->m, line->a); printf("========\n"); printf("LU Decomp\n"); uint32_t n = 10; Matrix_double *a = InitMatrixWithSize(double, n, n, 0.0); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) a->data[i]->data[j] = (100 - rand() % 200); } strcpy(s, ""); format_matrix_into(a, s); printf("a = %s", s); uint32_t solution = 100; Array_double *b = InitArrayWithSize(double, n, (double)solution); Matrix_double **u_l = lu_decomp(a); Matrix_double *u = u_l[0]; Matrix_double *l = u_l[1]; strcpy(s, ""); format_matrix_into(u, s); printf("u = %s", s); strcpy(s, ""); format_matrix_into(l, s); printf("l = %s", s); strcpy(s, ""); format_vector_into(b, s); printf("b = %s", s); printf("========\n"); printf("Forward / Backward Substitution Solution to ax=b\n"); Array_double *b_fsub = fsubst(l, b); free_vector(b); strcpy(s, ""); format_vector_into(b_fsub, s); printf("b_fsub: %s", s); Array_double *x_bsub = bsubst(u, b_fsub); strcpy(s, ""); format_vector_into(x_bsub, s); printf("x_bsub: %s", s); free_vector(b_fsub); printf("Verifications\n"); for (size_t row = 0; row < a->rows; row++) { double curr = 0; for (size_t col = 0; col < a->cols; col++) curr += a->data[row]->data[col] * x_bsub->data[col]; printf("Substituions for values in row %zu = %f, true value err=%.10e\n", row, curr, fabs(curr - solution)); } return 0; }