* regression consider the generic problem of fitting a dataset to a linear polynomial given discrete f: x \rightarrow y interpolation: y = a + bx [[1 x_0] [[y_0] [1 x_1] \cdot [[a] = [y_1] [1 x_n]] [b]] [y_n]] consider p \in col(A) then y = p + q for some q \cdot p = 0 then we can generate n \in col(A) by $Az$ and n must be orthogonal to q as well (Az)^T \cdot q = 0 = (Az)^T (y - p) 0 = (z^T A^T)(y - Ax) = z^T (A^T y - A^T A x) = A^T Ax = A^T y A^T A = [[n+1 \Sigma_{n=0}^n x_n] [\Sigma_{n=0}^n x_n \Sigma_{n=0}^n x_n^2]] A^T y = [[\Sigma_{n=0}^n y_n] [\Sigma_{n=0}^n x_n y_n]] a_11 = n+1 a_12 = \Sigma_{n=0}^n x_n a_21 = a_12 a_22 = \Sigma_{n=0}^n x_n^2 b_1 = \Sigma_{n=0}^n y_n b_2 = \Sigma_{n=0}^n x_n y_n then apply this with: log(e(h)) \leq log(C) + rlog(h) * homework 3: two columns \Rightarrow coefficients for linear regression