lizfcm/test/eigen.t.c

67 lines
1.9 KiB
C

#include "lizfcm.test.h"
UTEST(eigen, leslie_matrix) {
Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8});
Array_double *survivor_ratios = InitArray(double, {0.8, 0.55});
Matrix_double *m = InitMatrixWithSize(double, 3, 3, 0.0);
m->data[0]->data[0] = 0.0;
m->data[0]->data[1] = 1.5;
m->data[0]->data[2] = 0.8;
m->data[1]->data[0] = 0.8;
m->data[2]->data[1] = 0.55;
Matrix_double *leslie = leslie_matrix(survivor_ratios, felicity);
EXPECT_TRUE(matrix_equal(leslie, m));
free_matrix(leslie);
free_matrix(m);
free_vector(felicity);
free_vector(survivor_ratios);
}
UTEST(eigen, leslie_matrix_dominant_eigenvalue) {
Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8});
Array_double *survivor_ratios = InitArray(double, {0.8, 0.55});
Matrix_double *leslie = leslie_matrix(survivor_ratios, felicity);
Array_double *v_guess = InitArrayWithSize(double, 3, 2.0);
double tolerance = 0.0001;
uint64_t max_iterations = 64;
double expect_dominant_eigenvalue = 1.22005;
double approx_dominant_eigenvalue =
dominant_eigenvalue(leslie, v_guess, tolerance, max_iterations);
EXPECT_NEAR(expect_dominant_eigenvalue, approx_dominant_eigenvalue,
tolerance);
free_vector(v_guess);
free_vector(survivor_ratios);
free_vector(felicity);
free_matrix(leslie);
}
UTEST(eigen, dominant_eigenvalue) {
Matrix_double *m = InitMatrixWithSize(double, 2, 2, 0.0);
m->data[0]->data[0] = 2.0;
m->data[0]->data[1] = -12.0;
m->data[1]->data[0] = 1.0;
m->data[1]->data[1] = -5.0;
Array_double *v_guess = InitArrayWithSize(double, 2, 1.0);
double tolerance = 0.0001;
uint64_t max_iterations = 64;
double expect_dominant_eigenvalue = -2.0;
double approx_dominant_eigenvalue =
dominant_eigenvalue(m, v_guess, tolerance, max_iterations);
EXPECT_NEAR(expect_dominant_eigenvalue, approx_dominant_eigenvalue,
tolerance);
free_matrix(m);
free_vector(v_guess);
}