Changed to nasm

This commit is contained in:
Simponic 2021-02-20 23:24:25 -07:00
commit a2a4a155c2
12 changed files with 359 additions and 0 deletions

BIN
boot.o Normal file

Binary file not shown.

BIN
gdt.o Normal file

Binary file not shown.

17
include/gdt.h Normal file
View File

@ -0,0 +1,17 @@
#ifndef GDT_H
#define GDT_H
#include "types.h"
struct GDT {
uint32_t limit;
uint32_t base;
uint8_t type;
} __attribute((packed));
struct GDT_ptr {
uint16_t limit;
uint32_t base;
} __attribute((packed));
#endif //GDT_H

19
include/print.h Normal file
View File

@ -0,0 +1,19 @@
#ifndef PRINT_H
#define PRINT_H
#include "types.h"
typedef struct TextOutput {
int terminal_row;
int terminal_column;
int max_row;
int max_column;
uint16_t* vid_mem;
}__attribute__((packed)) TextOutput;
TextOutput createOutput(const int max_row, const int max_column, uint16_t* vid_mem);
void scrollText(TextOutput* textOutput);
void putChar(uint8_t character, uint8_t background, uint8_t foreground, TextOutput* textOutput);
void print(char* string, uint8_t background, uint8_t foreground, TextOutput* textOutput);
#endif // PRINT_H

16
include/types.h Normal file
View File

@ -0,0 +1,16 @@
#ifndef TYPES_H
#define TYPES_H
typedef char int8_t;
typedef unsigned char uint8_t;
typedef short int16_t;
typedef unsigned short uint16_t;
typedef int int32_t;
typedef unsigned int uint32_t;
typedef long long int int64_t;
typedef unsigned long long int uint64_t;
#endif

43
linker.ld Normal file
View File

@ -0,0 +1,43 @@
/* The bootloader will look at this image and start execution at the symbol
designated as the entry point. */
ENTRY(_start)
/* Tell where the various sections of the object files will be put in the final
kernel image. */
SECTIONS
{
/* Begin putting sections at 1 MiB, a conventional place for kernels to be
loaded at by the bootloader. */
. = 1M;
/* First put the multiboot header, as it is required to be put very early
early in the image or the bootloader won't recognize the file format.
Next we'll put the .text section. */
.text BLOCK(4K) : ALIGN(4K)
{
*(.multiboot)
*(.text)
}
/* Read-only data. */
.rodata BLOCK(4K) : ALIGN(4K)
{
*(.rodata)
}
/* Read-write data (initialized) */
.data BLOCK(4K) : ALIGN(4K)
{
*(.data)
}
/* Read-write data (uninitialized) and stack */
.bss BLOCK(4K) : ALIGN(4K)
{
*(COMMON)
*(.bss)
}
/* The compiler may produce other sections, by default it will put them in
a segment with the same name. Simply add stuff here as needed. */
}

27
makefile Normal file
View File

@ -0,0 +1,27 @@
# vim: noexpandtab tabstop=4 shiftwidth=4
CXX = i386-elf-gcc
CFLAGS = -std=gnu99 -ffreestanding -O2 -Wall -Wextra -nostdlib -Iinclude
ASM = nasm
OBJECTS = gdt.o boot.o print.o kernel.o
%.o : src/%.c
$(CXX) $(CFLAGS) -o $@ -c $<
%.o : src/%.s
$(ASM) -felf32 $< -o $@
os.bin : $(OBJECTS)
$(CXX) -T linker.ld -o os.bin $(CFLAGS) $(OBJECTS) -lgcc
os.iso : os.bin
mkdir -p isodir/boot/grub
mv os.bin isodir/boot/os.bin
echo "menuentry 'os' {" >> grub.cfg
echo " multiboot /boot/os.bin" >> grub.cfg
echo "}" >> grub.cfg
mv grub.cfg isodir/boot/grub/grub.cfg
grub-mkrescue -o os.iso isodir
clean :
rm -rf *.o *.iso *.bin *.cfg isodir/

BIN
print.o Normal file

Binary file not shown.

106
src/boot.s Normal file
View File

@ -0,0 +1,106 @@
; Declare constants for the multiboot header.
MBALIGN equ 1 << 0 ; align loaded modules on page boundaries
MEMINFO equ 1 << 1 ; provide memory map
FLAGS equ MBALIGN | MEMINFO ; this is the Multiboot 'flag' field
MAGIC equ 0x1BADB002 ; 'magic number' lets bootloader find the header
CHECKSUM equ -(MAGIC + FLAGS) ; checksum of above, to prove we are multiboot
; Declare a multiboot header that marks the program as a kernel. These are magic
; values that are documented in the multiboot standard. The bootloader will
; search for this signature in the first 8 KiB of the kernel file, aligned at a
; 32-bit boundary. The signature is in its own section so the header can be
; forced to be within the first 8 KiB of the kernel file.
section .multiboot
align 4
dd MAGIC
dd FLAGS
dd CHECKSUM
; The multiboot standard does not define the value of the stack pointer register
; (esp) and it is up to the kernel to provide a stack. This allocates room for a
; small stack by creating a symbol at the bottom of it, then allocating 16384
; bytes for it, and finally creating a symbol at the top. The stack grows
; downwards on x86. The stack is in its own section so it can be marked nobits,
; which means the kernel file is smaller because it does not contain an
; uninitialized stack. The stack on x86 must be 16-byte aligned according to the
; System V ABI standard and de-facto extensions. The compiler will assume the
; stack is properly aligned and failure to align the stack will result in
; undefined behavior.
section .bss
align 16
stack_bottom:
resb 16384 ; 16 KiB
stack_top:
; The linker script specifies _start as the entry point to the kernel and the
; bootloader will jump to this position once the kernel has been loaded. It
; doesn't make sense to return from this function as the bootloader is gone.
; Declare _start as a function symbol with the given symbol size.
section .text
global _gdt_flush ; Allows the C code to link to this
extern _gp ; Says that '_gp' is in another file
_gdt_flush:
lgdt [_gp] ; Load the GDT with our '_gp' which is a special pointer
mov ax, 0x10 ; 0x10 is the offset in the GDT to our data segment
mov ds, ax
mov es, ax
mov fs, ax
mov gs, ax
mov ss, ax
jmp 0x08:flush2 ; 0x08 is the offset to our code segment: Far jump!
flush2:
ret ; Returns back to the C code!
global _start:function (_start.end - _start)
_start:
; The bootloader has loaded us into 32-bit protected mode on a x86
; machine. Interrupts are disabled. Paging is disabled. The processor
; state is as defined in the multiboot standard. The kernel has full
; control of the CPU. The kernel can only make use of hardware features
; and any code it provides as part of itself. There's no printf
; function, unless the kernel provides its own <stdio.h> header and a
; printf implementation. There are no security restrictions, no
; safeguards, no debugging mechanisms, only what the kernel provides
; itself. It has absolute and complete power over the
; machine.
; To set up a stack, we set the esp register to point to the top of our
; stack (as it grows downwards on x86 systems). This is necessarily done
; in assembly as languages such as C cannot function without a stack.
mov esp, stack_top
; This is a good place to initialize crucial processor state before the
; high-level kernel is entered. It's best to minimize the early
; environment where crucial features are offline. Note that the
; processor is not fully initialized yet: Features such as floating
; point instructions and instruction set extensions are not initialized
; yet. The GDT should be loaded here. Paging should be enabled here.
; C++ features such as global constructors and exceptions will require
; runtime support to work as well.
; Enter the high-level kernel. The ABI requires the stack is 16-byte
; aligned at the time of the call instruction (which afterwards pushes
; the return pointer of size 4 bytes). The stack was originally 16-byte
; aligned above and we've since pushed a multiple of 16 bytes to the
; stack since (pushed 0 bytes so far) and the alignment is thus
; preserved and the call is well defined.
; note, that if you are building on Windows, C functions may have "_" prefix in assembly: _kernel_main
extern kernel_main
call kernel_main
; If the system has nothing more to do, put the computer into an
; infinite loop. To do that:
; 1) Disable interrupts with cli (clear interrupt enable in eflags).
; They are already disabled by the bootloader, so this is not needed.
; Mind that you might later enable interrupts and return from
; kernel_main (which is sort of nonsensical to do).
; 2) Wait for the next interrupt to arrive with hlt (halt instruction).
; Since they are disabled, this will lock up the computer.
; 3) Jump to the hlt instruction if it ever wakes up due to a
; non-maskable interrupt occurring or due to system management mode.
cli
.hang: hlt
jmp .hang
.end:

36
src/gdt.c Normal file
View File

@ -0,0 +1,36 @@
#include "gdt.h"
void encodeGDT(uint8_t* gdtEntry, struct GDT source) {
if ((source.limit > 65536) && ((source.limit & 0xFFF) == 0xFFF)) {
// Set the GDT to use paging
// To do this we need to make sure the limit is aligned to 4KiB
source.limit = source.limit >> 12;
// Granularity: 1 (use paging with 4KiB segments)
// Size: 1 (32 bit protected mode)
gdtEntry[6] = 0xC0;
}
else {
// Granularity: 0 (1 byte segments)
// Size: 1
gdtEntry[6] = 0x40;
}
// Here we are encoding the limit
// Bits 0-15 encode the bottom 16 bits of the limit
gdtEntry[0] = source.limit & 0xFF;
gdtEntry[1] = (source.limit >> 8) & 0xFF;
// Bits 48-51 encode the last 4 bits of the limit
gdtEntry[6] |= (source.limit >> 16) & 0xF;
// Bits 16-39 encode the bottom 24 bits of the base
gdtEntry[2] = source.base & 0xFF;
gdtEntry[3] = (source.base >> 8) & 0xFF;
gdtEntry[4] = (source.base >> 16) & 0xFF;
// Bits 56-64 encode the last byte of the base
gdtEntry[7] = (source.base >> 24) & 0xFF;
// Bits 40-47 set the access byte, which is documented at https://wiki.osdev.org/GDT,
// where most of the ideas for this function are taken from shamelessly
gdtEntry[5] = source.type;
}

22
src/kernel.c Normal file
View File

@ -0,0 +1,22 @@
#include "gdt.h"
#include "types.h"
#include "print.h"
#define FOREGROUND 0x0
#define BACKGROUND 0xF
void PrintWithScreenFill(char* string, TextOutput* output_stream) {
// Print a string and fill the screen
print(string, BACKGROUND, FOREGROUND, output_stream);
int row = output_stream->terminal_row;
while (output_stream->terminal_row < output_stream->max_row) {
putChar('\n', BACKGROUND, FOREGROUND, output_stream);
}
output_stream->terminal_row = row;
}
void kernel_main(void) {
TextOutput output_stream = createOutput(25,80,(uint16_t*)0xB8000);
PrintWithScreenFill("Hello, Logan World!\n", &output_stream);
}

73
src/print.c Normal file
View File

@ -0,0 +1,73 @@
#include "print.h"
TextOutput createOutput(const int max_row, const int max_column, uint16_t* vid_mem) {
// Create a new TextOutput interface
TextOutput output;
output.max_row = max_row;
output.max_column = max_column;
output.vid_mem = vid_mem;
output.terminal_row = 0;
output.terminal_column = 0;
return output;
}
void scrollText(TextOutput* textOutput) {
// Move each character up one row
for (int y = 0; y < textOutput->max_row; y++) {
for (int x = 0; x < textOutput->max_column; x++) {
*(textOutput->vid_mem + textOutput->max_column*y + x) =
*(textOutput->vid_mem + textOutput->max_column*(y+1) + x);
}
}
textOutput->terminal_row--;
}
void putChar(uint8_t character, uint8_t background, uint8_t foreground,
TextOutput* textOutput) {
foreground = foreground & 0xF; background = background & 0xF;
// Handle putting a character to the screen
if (textOutput->terminal_row == textOutput->max_row) {
scrollText(textOutput);
}
if (character == '\r') {
// Delete the character before this \r
if (textOutput->terminal_column == 0) {
textOutput->terminal_row--;
textOutput->terminal_column = 80;
}
textOutput->terminal_column--;
*(textOutput->vid_mem + textOutput->terminal_row*textOutput->max_column
+ textOutput->terminal_column) = background << 12;
return;
}
else if (character == '\n' || textOutput->terminal_column == textOutput->max_column) {
// Make a new line
for (int i = textOutput->terminal_column; i < textOutput->max_column; i++) {
*(textOutput->vid_mem + textOutput->terminal_row*textOutput->max_column
+ textOutput->terminal_column) = background << 12;
textOutput->terminal_column++;
}
textOutput->terminal_row++;
textOutput->terminal_column = 0;
}
if (character != '\n' && character != '\r') {
// Write character to video memory
uint16_t entry = (background << 12) | (foreground << 8) | character;
*(textOutput->vid_mem + textOutput->terminal_row*textOutput->max_column
+ textOutput->terminal_column) = entry;
textOutput->terminal_column++;
}
}
void print(char* string, uint8_t background, uint8_t foreground, TextOutput* textOutput) {
// Print a string
for (string; *string; string++) {
putChar(*string, background, foreground, textOutput);
}
}