2023-11-27 14:54:39 -07:00

117 lines
4.0 KiB
C

#include "lizfcm.h"
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
Matrix_double *leslie_matrix(Array_double *age_class_surivor_ratio,
Array_double *age_class_offspring) {
assert(age_class_surivor_ratio->size + 1 == age_class_offspring->size);
Matrix_double *leslie = InitMatrixWithSize(double, age_class_offspring->size,
age_class_offspring->size, 0.0);
free_vector(leslie->data[0]);
leslie->data[0] = copy_vector(age_class_offspring);
for (size_t i = 0; i < age_class_surivor_ratio->size; i++)
leslie->data[i + 1]->data[i] = age_class_surivor_ratio->data[i];
return leslie;
}
double dominant_eigenvalue(Matrix_double *m, Array_double *v, double tolerance,
size_t max_iterations) {
assert(m->rows == m->cols);
assert(m->rows == v->size);
double error = tolerance;
size_t iter = max_iterations;
double lambda = 0.0;
Array_double *eigenvector_1 = copy_vector(v);
while (error >= tolerance && (--iter) > 0) {
Array_double *eigenvector_2 = m_dot_v(m, eigenvector_1);
Array_double *normalized_eigenvector_2 =
scale_v(eigenvector_2, 1.0 / linf_norm(eigenvector_2));
free_vector(eigenvector_2);
eigenvector_2 = normalized_eigenvector_2;
Array_double *mx = m_dot_v(m, eigenvector_2);
double new_lambda =
v_dot_v(mx, eigenvector_2) / v_dot_v(eigenvector_2, eigenvector_2);
error = fabs(new_lambda - lambda);
lambda = new_lambda;
free_vector(eigenvector_1);
eigenvector_1 = eigenvector_2;
}
return lambda;
}
double shift_inverse_power_eigenvalue(Matrix_double *m, Array_double *v,
double shift, double tolerance,
size_t max_iterations) {
assert(m->rows == m->cols);
assert(m->rows == v->size);
Matrix_double *m_c = copy_matrix(m);
for (size_t y = 0; y < m_c->rows; ++y)
m_c->data[y]->data[y] = m_c->data[y]->data[y] - shift;
double error = tolerance;
size_t iter = max_iterations;
double lambda = shift;
Array_double *eigenvector_1 = copy_vector(v);
while (error >= tolerance && (--iter) > 0) {
Array_double *eigenvector_2 = solve_matrix_lu_bsubst(m_c, eigenvector_1);
Array_double *normalized_eigenvector_2 =
scale_v(eigenvector_2, 1.0 / linf_norm(eigenvector_2));
free_vector(eigenvector_2);
Array_double *mx = m_dot_v(m, normalized_eigenvector_2);
double new_lambda =
v_dot_v(mx, normalized_eigenvector_2) /
v_dot_v(normalized_eigenvector_2, normalized_eigenvector_2);
error = fabs(new_lambda - lambda);
lambda = new_lambda;
free_vector(eigenvector_1);
eigenvector_1 = normalized_eigenvector_2;
}
return lambda;
}
Array_double *partition_find_eigenvalues(Matrix_double *m,
Matrix_double *guesses,
double tolerance,
size_t max_iterations) {
assert(guesses->rows >=
2); // we need at least, the most and least dominant eigenvalues
double end = dominant_eigenvalue(m, guesses->data[guesses->rows - 1],
tolerance, max_iterations);
double begin =
least_dominant_eigenvalue(m, guesses->data[0], tolerance, max_iterations);
double delta = (end - begin) / guesses->rows;
Array_double *eigenvalues = InitArrayWithSize(double, guesses->rows, 0.0);
for (size_t i = 0; i < guesses->rows; i++) {
double box_midpoint = ((delta * i) + (delta * (i + 1))) / 2;
double nearest_eigenvalue = shift_inverse_power_eigenvalue(
m, guesses->data[i], box_midpoint, tolerance, max_iterations);
eigenvalues->data[i] = nearest_eigenvalue;
}
return eigenvalues;
}
double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
double tolerance, size_t max_iterations) {
return shift_inverse_power_eigenvalue(m, v, 0.0, tolerance, max_iterations);
}