lizfcm/doc/software_manual.org
2023-11-06 08:52:40 -07:00

966 lines
28 KiB
Org Mode

#+TITLE: LIZFCM Software Manual (v0.2)
#+AUTHOR: Elizabeth Hunt
#+LATEX_HEADER: \notindent \notag \usepackage{amsmath} \usepackage[a4paper,margin=1in,portrait]{geometry}
#+LATEX: \setlength\parindent{0pt}
#+STARTUP: entitiespretty fold inlineimages
* Design
The LIZFCM static library (at [[https://github.com/Simponic/math-4610]]) is a successor to my
attempt at writing codes for the Fundamentals of Computational Mathematics course in Common
Lisp, but the effort required to meet the requirement of creating a static library became
too difficult to integrate outside of the ~ASDF~ solution that Common Lisp already brings
to the table.
All of the work established in ~deprecated-cl~ has been painstakingly translated into
the C programming language. I have a couple tenets for its design:
+ Implementations of routines should all be done immutably in respect to arguments.
+ Functional programming is good (it's... rough in C though).
+ Routines are separated into "modules" that follow a form of separation of concerns
in files, and not individual files per function.
* Compilation
A provided ~Makefile~ is added for convencience. It has been tested on an ~arm~-based M1 machine running
MacOS as well as ~x86~ Arch Linux.
1. ~cd~ into the root of the repo
2. ~make~
Then, as of homework 5, the testing routines are provided in ~test~ and utilize the
~utest~ "micro"library. They compile to a binary in ~./dist/lizfcm.test~.
Execution of the Makefile will perform compilation of individual routines.
But, in the requirement of manual intervention (should the little alien workers
inside the computer fail to do their job), one can use the following command to
produce an object file:
\begin{verbatim}
gcc -Iinc/ -lm -Wall -c src/<the_routine>.c -o build/<the_routine>.o
\end{verbatim}
Which is then bundled into a static library in ~lib/lizfcm.a~ and can be linked
in the standard method.
* The LIZFCM API
** Simple Routines
*** ~smaceps~
+ Author: Elizabeth Hunt
+ Name: ~smaceps~
+ Location: ~src/maceps.c~
+ Input: none
+ Output: a ~float~ returning the specific "Machine Epsilon" of a machine on a
single precision floating point number at which it becomes "indistinguishable".
#+BEGIN_SRC c
float smaceps() {
float one = 1.0;
float machine_epsilon = 1.0;
float one_approx = one + machine_epsilon;
while (fabsf(one_approx - one) > 0) {
machine_epsilon /= 2;
one_approx = one + machine_epsilon;
}
return machine_epsilon;
}
#+END_SRC
*** ~dmaceps~
+ Author: Elizabeth Hunt
+ Name: ~dmaceps~
+ Location: ~src/maceps.c~
+ Input: none
+ Output: a ~double~ returning the specific "Machine Epsilon" of a machine on a
double precision floating point number at which it becomes "indistinguishable".
#+BEGIN_SRC c
double dmaceps() {
double one = 1.0;
double machine_epsilon = 1.0;
double one_approx = one + machine_epsilon;
while (fabs(one_approx - one) > 0) {
machine_epsilon /= 2;
one_approx = one + machine_epsilon;
}
return machine_epsilon;
}
#+END_SRC
** Derivative Routines
*** ~central_derivative_at~
+ Author: Elizabeth Hunt
+ Name: ~central_derivative_at~
+ Location: ~src/approx_derivative.c~
+ Input:
- ~f~ is a pointer to a one-ary function that takes a double as input and produces
a double as output
- ~a~ is the domain value at which we approximate ~f'~
- ~h~ is the step size
+ Output: a ~double~ of the approximate value of ~f'(a)~ via the central difference
method.
#+BEGIN_SRC c
double central_derivative_at(double (*f)(double), double a, double h) {
assert(h > 0);
double x2 = a + h;
double x1 = a - h;
double y2 = (*f)(x2);
double y1 = (*f)(x1);
return (y2 - y1) / (x2 - x1);
}
#+END_SRC
*** ~forward_derivative_at~
+ Author: Elizabeth Hunt
+ Name: ~forward_derivative_at~
+ Location: ~src/approx_derivative.c~
+ Input:
- ~f~ is a pointer to a one-ary function that takes a double as input and produces
a double as output
- ~a~ is the domain value at which we approximate ~f'~
- ~h~ is the step size
+ Output: a ~double~ of the approximate value of ~f'(a)~ via the forward difference
method.
#+BEGIN_SRC c
double forward_derivative_at(double (*f)(double), double a, double h) {
assert(h > 0);
double x2 = a + h;
double x1 = a;
double y2 = (*f)(x2);
double y1 = (*f)(x1);
return (y2 - y1) / (x2 - x1);
}
#+END_SRC
*** ~backward_derivative_at~
+ Author: Elizabeth Hunt
+ Name: ~backward_derivative_at~
+ Location: ~src/approx_derivative.c~
+ Input:
- ~f~ is a pointer to a one-ary function that takes a double as input and produces
a double as output
- ~a~ is the domain value at which we approximate ~f'~
- ~h~ is the step size
+ Output: a ~double~ of the approximate value of ~f'(a)~ via the backward difference
method.
#+BEGIN_SRC c
double backward_derivative_at(double (*f)(double), double a, double h) {
assert(h > 0);
double x2 = a;
double x1 = a - h;
double y2 = (*f)(x2);
double y1 = (*f)(x1);
return (y2 - y1) / (x2 - x1);
}
#+END_SRC
** Vector Routines
*** Vector Arithmetic: ~add_v, minus_v~
+ Author: Elizabeth Hunt
+ Name(s): ~add_v~, ~minus_v~
+ Location: ~src/vector.c~
+ Input: two pointers to locations in memory wherein ~Array_double~'s lie
+ Output: a pointer to a new ~Array_double~ as the result of addition or subtraction
of the two input ~Array_double~'s
#+BEGIN_SRC c
Array_double *add_v(Array_double *v1, Array_double *v2) {
assert(v1->size == v2->size);
Array_double *sum = copy_vector(v1);
for (size_t i = 0; i < v1->size; i++)
sum->data[i] += v2->data[i];
return sum;
}
Array_double *minus_v(Array_double *v1, Array_double *v2) {
assert(v1->size == v2->size);
Array_double *sub = InitArrayWithSize(double, v1->size, 0);
for (size_t i = 0; i < v1->size; i++)
sub->data[i] = v1->data[i] - v2->data[i];
return sub;
}
#+END_SRC
*** Norms: ~l1_norm~, ~l2_norm~, ~linf_norm~
+ Author: Elizabeth Hunt
+ Name(s): ~l1_norm~, ~l2_norm~, ~linf_norm~
+ Location: ~src/vector.c~
+ Input: a pointer to a location in memory wherein an ~Array_double~ lies
+ Output: a ~double~ representing the value of the norm the function applies
#+BEGIN_SRC c
double l1_norm(Array_double *v) {
double sum = 0;
for (size_t i = 0; i < v->size; ++i)
sum += fabs(v->data[i]);
return sum;
}
double l2_norm(Array_double *v) {
double norm = 0;
for (size_t i = 0; i < v->size; ++i)
norm += v->data[i] * v->data[i];
return sqrt(norm);
}
double linf_norm(Array_double *v) {
assert(v->size > 0);
double max = v->data[0];
for (size_t i = 0; i < v->size; ++i)
max = c_max(v->data[i], max);
return max;
}
#+END_SRC
*** ~vector_distance~
+ Author: Elizabeth Hunt
+ Name: ~vector_distance~
+ Location: ~src/vector.c~
+ Input: two pointers to locations in memory wherein ~Array_double~'s lie, and a pointer to a
one-ary function ~norm~ taking as input a pointer to an ~Array_double~ and returning a double
representing the norm of that ~Array_double~
#+BEGIN_SRC c
double vector_distance(Array_double *v1, Array_double *v2,
double (*norm)(Array_double *)) {
Array_double *minus = minus_v(v1, v2);
double dist = (*norm)(minus);
free(minus);
return dist;
}
#+END_SRC
*** Distances: ~l1_distance~, ~l2_distance~, ~linf_distance~
+ Author: Elizabeth Hunt
+ Name(s): ~l1_distance~, ~l2_distance~, ~linf_distance~
+ Location: ~src/vector.c~
+ Input: two pointers to locations in memory wherein ~Array_double~'s lie, and the distance
via the corresponding ~l1~, ~l2~, or ~linf~ norms
+ Output: A ~double~ representing the distance between the two ~Array_doubles~'s by the given
norm.
#+BEGIN_SRC c
double l1_distance(Array_double *v1, Array_double *v2) {
return vector_distance(v1, v2, &l1_norm);
}
double l2_distance(Array_double *v1, Array_double *v2) {
return vector_distance(v1, v2, &l2_norm);
}
double linf_distance(Array_double *v1, Array_double *v2) {
return vector_distance(v1, v2, &linf_norm);
}
#+END_SRC
*** ~sum_v~
+ Author: Elizabeth Hunt
+ Name: ~sum_v~
+ Location: ~src/vector.c~
+ Input: a pointer to an ~Array_double~
+ Output: a ~double~ representing the sum of all the elements of an ~Array_double~
#+BEGIN_SRC c
double sum_v(Array_double *v) {
double sum = 0;
for (size_t i = 0; i < v->size; i++)
sum += v->data[i];
return sum;
}
#+END_SRC
*** ~scale_v~
+ Author: Elizabeth Hunt
+ Name: ~scale_v~
+ Location: ~src/vector.c~
+ Input: a pointer to an ~Array_double~ and a scalar ~double~ to scale the vector
+ Output: a pointer to a new ~Array_double~ of the scaled input ~Array_double~
#+BEGIN_SRC c
Array_double *scale_v(Array_double *v, double m) {
Array_double *copy = copy_vector(v);
for (size_t i = 0; i < v->size; i++)
copy->data[i] *= m;
return copy;
}
#+END_SRC
*** ~free_vector~
+ Author: Elizabeth Hunt
+ Name: ~free_vector~
+ Location: ~src/vector.c~
+ Input: a pointer to an ~Array_double~
+ Output: nothing.
+ Side effect: free the memory of the reserved ~Array_double~ on the heap
#+BEGIN_SRC c
void free_vector(Array_double *v) {
free(v->data);
free(v);
}
#+END_SRC
*** ~add_element~
+ Author: Elizabeth Hunt
+ Name: ~add_element~
+ Location: ~src/vector.c~
+ Input: a pointer to an ~Array_double~
+ Output: a new ~Array_double~ with element ~x~ appended.
#+BEGIN_SRC c
Array_double *add_element(Array_double *v, double x) {
Array_double *pushed = InitArrayWithSize(double, v->size + 1, 0.0);
for (size_t i = 0; i < v->size; ++i)
pushed->data[i] = v->data[i];
pushed->data[v->size] = x;
return pushed;
}
#+END_SRC
*** ~slice_element~
+ Author: Elizabeth Hunt
+ Name: ~slice_element~
+ Location: ~src/vector.c~
+ Input: a pointer to an ~Array_double~
+ Output: a new ~Array_double~ with element ~x~ sliced.
#+BEGIN_SRC c
Array_double *slice_element(Array_double *v, size_t x) {
Array_double *sliced = InitArrayWithSize(double, v->size - 1, 0.0);
for (size_t i = 0; i < v->size - 1; ++i)
sliced->data[i] = i >= x ? v->data[i + 1] : v->data[i];
return sliced;
}
#+END_SRC
*** ~copy_vector~
+ Author: Elizabeth Hunt
+ Name: ~copy_vector~
+ Location: ~src/vector.c~
+ Input: a pointer to an ~Array_double~
+ Output: a pointer to a new ~Array_double~ whose ~data~ and ~size~ are copied from the input ~Array_double~
#+BEGIN_SRC c
Array_double *copy_vector(Array_double *v) {
Array_double *copy = InitArrayWithSize(double, v->size, 0.0);
for (size_t i = 0; i < copy->size; ++i)
copy->data[i] = v->data[i];
return copy;
}
#+END_SRC
*** ~format_vector_into~
+ Author: Elizabeth Hunt
+ Name: ~format_vector_into~
+ Location: ~src/vector.c~
+ Input: a pointer to an ~Array_double~ and a pointer to a c-string ~s~ to "print" the vector out
into
+ Output: nothing.
+ Side effect: overwritten memory into ~s~
#+BEGIN_SRC c
void format_vector_into(Array_double *v, char *s) {
if (v->size == 0) {
strcat(s, "empty");
return;
}
for (size_t i = 0; i < v->size; ++i) {
char num[64];
strcpy(num, "");
sprintf(num, "%f,", v->data[i]);
strcat(s, num);
}
strcat(s, "\n");
}
#+END_SRC
** Matrix Routines
*** ~lu_decomp~
+ Author: Elizabeth Hunt
+ Name: ~lu_decomp~
+ Location: ~src/matrix.c~
+ Input: a pointer to a ~Matrix_double~ $m$ to decompose into a lower triangular and upper triangular
matrix $L$, $U$, respectively such that $LU = m$.
+ Output: a pointer to the location in memory in which two ~Matrix_double~'s reside: the first
representing $L$, the second, $U$.
+ Errors: Fails assertions when encountering a matrix that cannot be
decomposed
#+BEGIN_SRC c
Matrix_double **lu_decomp(Matrix_double *m) {
assert(m->cols == m->rows);
Matrix_double *u = copy_matrix(m);
Matrix_double *l_empt = InitMatrixWithSize(double, m->rows, m->cols, 0.0);
Matrix_double *l = put_identity_diagonal(l_empt);
free_matrix(l_empt);
Matrix_double **u_l = malloc(sizeof(Matrix_double *) * 2);
for (size_t y = 0; y < m->rows; y++) {
if (u->data[y]->data[y] == 0) {
printf("ERROR: a pivot is zero in given matrix\n");
assert(false);
}
}
if (u && l) {
for (size_t x = 0; x < m->cols; x++) {
for (size_t y = x + 1; y < m->rows; y++) {
double denom = u->data[x]->data[x];
if (denom == 0) {
printf("ERROR: non-factorable matrix\n");
assert(false);
}
double factor = -(u->data[y]->data[x] / denom);
Array_double *scaled = scale_v(u->data[x], factor);
Array_double *added = add_v(scaled, u->data[y]);
free_vector(scaled);
free_vector(u->data[y]);
u->data[y] = added;
l->data[y]->data[x] = -factor;
}
}
}
u_l[0] = u;
u_l[1] = l;
return u_l;
}
#+END_SRC
*** ~bsubst~
+ Author: Elizabeth Hunt
+ Name: ~bsubst~
+ Location: ~src/matrix.c~
+ Input: a pointer to an upper-triangular ~Matrix_double~ $u$ and a ~Array_double~
$b$
+ Output: a pointer to a new ~Array_double~ whose entries are given by performing
back substitution
#+BEGIN_SRC c
Array_double *bsubst(Matrix_double *u, Array_double *b) {
assert(u->rows == b->size && u->cols == u->rows);
Array_double *x = copy_vector(b);
for (int64_t row = b->size - 1; row >= 0; row--) {
for (size_t col = b->size - 1; col > row; col--)
x->data[row] -= x->data[col] * u->data[row]->data[col];
x->data[row] /= u->data[row]->data[row];
}
return x;
}
#+END_SRC
*** ~fsubst~
+ Author: Elizabeth Hunt
+ Name: ~fsubst~
+ Location: ~src/matrix.c~
+ Input: a pointer to a lower-triangular ~Matrix_double~ $l$ and a ~Array_double~
$b$
+ Output: a pointer to a new ~Array_double~ whose entries are given by performing
forward substitution
#+BEGIN_SRC c
Array_double *fsubst(Matrix_double *l, Array_double *b) {
assert(l->rows == b->size && l->cols == l->rows);
Array_double *x = copy_vector(b);
for (size_t row = 0; row < b->size; row++) {
for (size_t col = 0; col < row; col++)
x->data[row] -= x->data[col] * l->data[row]->data[col];
x->data[row] /= l->data[row]->data[row];
}
return x;
}
#+END_SRC
*** ~solve_matrix_lu_bsubst~
+ Author: Elizabeth Hunt
+ Location: ~src/matrix.c~
+ Input: a pointer to a ~Matrix_double~ $m$ and a pointer to an ~Array_double~ $b$
+ Output: $x$ such that $mx = b$ if such a solution exists (else it's non LU-factorable as discussed
above)
Here we make use of forward substitution to first solve $Ly = b$ given $L$ as the $L$ factor in
~lu_decomp~. Then we use back substitution to solve $Ux = y$ for $x$ similarly given $U$.
Then, $LUx = b$, thus $x$ is a solution.
#+BEGIN_SRC c
Array_double *solve_matrix_lu_bsubst(Matrix_double *m, Array_double *b) {
assert(b->size == m->rows);
assert(m->rows == m->cols);
Array_double *x = copy_vector(b);
Matrix_double **u_l = lu_decomp(m);
Matrix_double *u = u_l[0];
Matrix_double *l = u_l[1];
Array_double *b_fsub = fsubst(l, b);
x = bsubst(u, b_fsub);
free_vector(b_fsub);
free_matrix(u);
free_matrix(l);
free(u_l);
return x;
}
#+END_SRC
*** ~gaussian_elimination~
+ Author: Elizabeth Hunt
+ Location: ~src/matrix.c~
+ Input: a pointer to a ~Matrix_double~ $m$
+ Output: a pointer to a copy of $m$ in reduced echelon form
This works by finding the row with a maximum value in the column $k$. Then, it uses that as a pivot, and
applying reduction to all other rows. The general idea is available at [[https://en.wikipedia.org/wiki/Gaussian_elimination]].
#+BEGIN_SRC c
Matrix_double *gaussian_elimination(Matrix_double *m) {
uint64_t h = 0;
uint64_t k = 0;
Matrix_double *m_cp = copy_matrix(m);
while (h < m_cp->rows && k < m_cp->cols) {
uint64_t max_row = 0;
double total_max = 0.0;
for (uint64_t row = h; row < m_cp->rows; row++) {
double this_max = c_max(fabs(m_cp->data[row]->data[k]), total_max);
if (c_max(this_max, total_max) == this_max) {
max_row = row;
}
}
if (max_row == 0) {
k++;
continue;
}
Array_double *swp = m_cp->data[max_row];
m_cp->data[max_row] = m_cp->data[h];
m_cp->data[h] = swp;
for (uint64_t row = h + 1; row < m_cp->rows; row++) {
double factor = m_cp->data[row]->data[k] / m_cp->data[h]->data[k];
m_cp->data[row]->data[k] = 0.0;
for (uint64_t col = k + 1; col < m_cp->cols; col++) {
m_cp->data[row]->data[col] -= m_cp->data[h]->data[col] * factor;
}
}
h++;
k++;
}
return m_cp;
}
#+END_SRC
*** ~solve_matrix_gaussian~
+ Author: Elizabeth Hunt
+ Location: ~src/matrix.c~
+ Input: a pointer to a ~Matrix_double~ $m$ and a target ~Array_double~ $b$
+ Output: a pointer to a vector $x$ being the solution to the equation $mx = b$
We first perform ~gaussian_elimination~ after augmenting $m$ and $b$. Then, as $m$ is in reduced echelon form, it's an upper
triangular matrix, so we can perform back substitution to compute $x$.
#+BEGIN_SRC c
Array_double *solve_matrix_gaussian(Matrix_double *m, Array_double *b) {
assert(b->size == m->rows);
assert(m->rows == m->cols);
Matrix_double *m_augment_b = add_column(m, b);
Matrix_double *eliminated = gaussian_elimination(m_augment_b);
Array_double *b_gauss = col_v(eliminated, m->cols);
Matrix_double *u = slice_column(eliminated, m->rows);
Array_double *solution = bsubst(u, b_gauss);
free_matrix(m_augment_b);
free_matrix(eliminated);
free_matrix(u);
free_vector(b_gauss);
return solution;
}
#+END_SRC
*** ~m_dot_v~
+ Author: Elizabeth Hunt
+ Location: ~src/matrix.c~
+ Input: a pointer to a ~Matrix_double~ $m$ and ~Array_double~ $v$
+ Output: the dot product $mv$ as an ~Array_double~
#+BEGIN_SRC c
Array_double *m_dot_v(Matrix_double *m, Array_double *v) {
assert(v->size == m->cols);
Array_double *product = copy_vector(v);
for (size_t row = 0; row < v->size; ++row)
product->data[row] = v_dot_v(m->data[row], v);
return product;
}
#+END_SRC
*** ~put_identity_diagonal~
+ Author: Elizabeth Hunt
+ Location: ~src/matrix.c~
+ Input: a pointer to a ~Matrix_double~
+ Output: a pointer to a copy to ~Matrix_double~ whose diagonal is full of 1's
#+BEGIN_SRC c
Matrix_double *put_identity_diagonal(Matrix_double *m) {
assert(m->rows == m->cols);
Matrix_double *copy = copy_matrix(m);
for (size_t y = 0; y < m->rows; ++y)
copy->data[y]->data[y] = 1.0;
return copy;
}
#+END_SRC
*** ~slice_column~
+ Author: Elizabeth Hunt
+ Location: ~src/matrix.c~
+ Input: a pointer to a ~Matrix_double~
+ Output: a pointer to a copy of the given ~Matrix_double~ with column at ~x~ sliced
#+BEGIN_SRC c
Matrix_double *slice_column(Matrix_double *m, size_t x) {
Matrix_double *sliced = copy_matrix(m);
for (size_t row = 0; row < m->rows; row++) {
Array_double *old_row = sliced->data[row];
sliced->data[row] = slice_element(old_row, x);
free_vector(old_row);
}
sliced->cols--;
return sliced;
}
#+END_SRC
*** ~add_column~
+ Author: Elizabet Hunt
+ Location: ~src/matrix.c~
+ Input: a pointer to a ~Matrix_double~ and a new vector representing the appended column ~x~
+ Output: a pointer to a copy of the given ~Matrix_double~ with a new column ~x~
#+BEGIN_SRC c
Matrix_double *add_column(Matrix_double *m, Array_double *v) {
Matrix_double *pushed = copy_matrix(m);
for (size_t row = 0; row < m->rows; row++) {
Array_double *old_row = pushed->data[row];
pushed->data[row] = add_element(old_row, v->data[row]);
free_vector(old_row);
}
pushed->cols++;
return pushed;
}
#+END_SRC
*** ~copy_matrix~
+ Author: Elizabeth Hunt
+ Location: ~src/matrix.c~
+ Input: a pointer to a ~Matrix_double~
+ Output: a pointer to a copy of the given ~Matrix_double~
#+BEGIN_SRC c
Matrix_double *copy_matrix(Matrix_double *m) {
Matrix_double *copy = InitMatrixWithSize(double, m->rows, m->cols, 0.0);
for (size_t y = 0; y < copy->rows; y++) {
free_vector(copy->data[y]);
copy->data[y] = copy_vector(m->data[y]);
}
return copy;
}
#+END_SRC
*** ~free_matrix~
+ Author: Elizabeth Hunt
+ Location: ~src/matrix.c~
+ Input: a pointer to a ~Matrix_double~
+ Output: none.
+ Side Effects: frees memory reserved by a given ~Matrix_double~ and its member ~Array_double~ vectors describing its rows.
#+BEGIN_SRC c
void free_matrix(Matrix_double *m) {
for (size_t y = 0; y < m->rows; ++y)
free_vector(m->data[y]);
free(m);
}
#+END_SRC
*** ~format_matrix_into~
+ Author: Elizabeth Hunt
+ Name: ~format_matrix_into~
+ Location: ~src/matrix.c~
+ Input: a pointer to a ~Matrix_double~ and a pointer to a c-string ~s~ to "print" the vector out
into
+ Output: nothing.
+ Side effect: overwritten memory into ~s~
#+BEGIN_SRC c
void format_matrix_into(Matrix_double *m, char *s) {
if (m->rows == 0)
strcpy(s, "empty");
for (size_t y = 0; y < m->rows; ++y) {
char row_s[256];
strcpy(row_s, "");
format_vector_into(m->data[y], row_s);
strcat(s, row_s);
}
strcat(s, "\n");
}
#+END_SRC
** Root Finding Methods
*** ~find_ivt_range~
+ Author: Elizabeth Hunt
+ Name: ~find_ivt_range~
+ Location: ~src/roots.c~
+ Input: a pointer to a oneary function taking a double and producing a double, the beginning point
in $R$ to search for a range, a ~delta~ step that is taken, and a ~max_steps~ number of maximum
iterations to perform.
+ Output: a pair of ~double~'s representing a closed closed interval ~[beginning, end]~
#+BEGIN_SRC c
double *find_ivt_range(double (*f)(double), double start_x, double delta,
size_t max_steps) {
double *range = malloc(sizeof(double) * 2);
double a = start_x;
while (f(a) * f(start_x) >= 0 && max_steps-- > 0)
a += delta;
if (max_steps == 0 && f(a) * f(start_x) > 0)
return NULL;
range[0] = start_x;
range[1] = a + delta;
return range;
}
#+END_SRC
*** ~bisect_find_root~
+ Author: Elizabeth Hunt
+ Name(s): ~bisect_find_root~
+ Input: a one-ary function taking a double and producing a double, a closed interval represented
by ~a~ and ~b~: ~[a, b]~, a ~tolerance~ at which we return the estimated root, and a
~max_iterations~ to break us out of a loop if we can never reach the ~tolerance~
+ Output: a ~double~ representing the estimated root
+ Description: recursively uses binary search to split the interval until we reach ~tolerance~. We
also assume the function ~f~ is continuous on ~[a, b]~.
#+BEGIN_SRC c
double bisect_find_root(double (*f)(double), double a, double b,
double tolerance, size_t max_iterations) {
assert(a <= b);
// guarantee there's a root somewhere between a and b by IVT
assert(f(a) * f(b) < 0);
double c = (1.0 / 2) * (a + b);
if (b - a < tolerance || max_iterations == 0)
return c;
if (f(a) * f(c) < 0)
return bisect_find_root(f, a, c, tolerance, max_iterations - 1);
return bisect_find_root(f, c, b, tolerance, max_iterations - 1);
}
#+END_SRC
*** ~bisect_find_root_with_error_assumption~
+ Author: Elizabeth Hunt
+ Name: ~bisect_find_root_with_error_assumption~
+ Input: a one-ary function taking a double and producing a double, a closed interval represented
by ~a~ and ~b~: ~[a, b]~, and a ~tolerance~ at which we return the estimated root
+ Output: a ~double~ representing the estimated root
+ Description: using the bisection method we know that $e_k \le (\frac{1}{2})^k (b_0 - a_0)$. So we can
calculate $k$ at the worst possible case (that the error is exactly the tolerance) to be
$\frac{log(tolerance) - log(b_0 - a_0)}{log(\frac{1}{2})}$. We pass this value into the ~max_iterations~
of ~bisect_find_root~ as above.
#+BEGIN_SRC c
double bisect_find_root_with_error_assumption(double (*f)(double), double a,
double b, double tolerance) {
assert(a <= b);
uint64_t max_iterations =
(uint64_t)ceil((log(tolerance) - log(b - a)) / log(1 / 2.0));
return bisect_find_root(f, a, b, tolerance, max_iterations);
}
#+END_SRC
** Linear Routines
*** ~least_squares_lin_reg~
+ Author: Elizabeth Hunt
+ Name: ~least_squares_lin_reg~
+ Location: ~src/lin.c~
+ Input: two pointers to ~Array_double~'s whose entries correspond two ordered
pairs in R^2
+ Output: a linear model best representing the ordered pairs via least squares
regression
#+BEGIN_SRC c
Line *least_squares_lin_reg(Array_double *x, Array_double *y) {
assert(x->size == y->size);
uint64_t n = x->size;
double sum_x = sum_v(x);
double sum_y = sum_v(y);
double sum_xy = v_dot_v(x, y);
double sum_xx = v_dot_v(x, x);
double denom = ((n * sum_xx) - (sum_x * sum_x));
Line *line = malloc(sizeof(Line));
line->m = ((sum_xy * n) - (sum_x * sum_y)) / denom;
line->a = ((sum_y * sum_xx) - (sum_x * sum_xy)) / denom;
return line;
}
#+END_SRC
** Appendix / Miscellaneous
*** Data Types
**** ~Line~
+ Author: Elizabeth Hunt
+ Location: ~inc/types.h~
#+BEGIN_SRC c
typedef struct Line {
double m;
double a;
} Line;
#+END_SRC
**** The ~Array_<type>~ and ~Matrix_<type>~
+ Author: Elizabeth Hunt
+ Location: ~inc/types.h~
We define two Pre processor Macros ~DEFINE_ARRAY~ and ~DEFINE_MATRIX~ that take
as input a type, and construct a struct definition for the given type for
convenient access to the vector or matrices dimensions.
Such that ~DEFINE_ARRAY(int)~ would expand to:
#+BEGIN_SRC c
typedef struct {
int* data;
size_t size;
} Array_int
#+END_SRC
And ~DEFINE_MATRIX(int)~ would expand a to ~Matrix_int~; containing a pointer to
a collection of pointers of ~Array_int~'s and its dimensions.
#+BEGIN_SRC c
typedef struct {
Array_int **data;
size_t cols;
size_t rows;
} Matrix_int
#+END_SRC
*** Macros
**** ~c_max~ and ~c_min~
+ Author: Elizabeth Hunt
+ Location: ~inc/macros.h~
+ Input: two structures that define an order measure
+ Output: either the larger or smaller of the two depending on the measure
#+BEGIN_SRC c
#define c_max(x, y) (((x) >= (y)) ? (x) : (y))
#define c_min(x, y) (((x) <= (y)) ? (x) : (y))
#+END_SRC
**** ~InitArray~
+ Author: Elizabeth Hunt
+ Location: ~inc/macros.h~
+ Input: a type and array of values to initialze an array with such type
+ Output: a new ~Array_type~ with the size of the given array and its data
#+BEGIN_SRC c
#define InitArray(TYPE, ...) \
({ \
TYPE temp[] = __VA_ARGS__; \
Array_##TYPE *arr = malloc(sizeof(Array_##TYPE)); \
arr->size = sizeof(temp) / sizeof(temp[0]); \
arr->data = malloc(arr->size * sizeof(TYPE)); \
memcpy(arr->data, temp, arr->size * sizeof(TYPE)); \
arr; \
})
#+END_SRC
**** ~InitArrayWithSize~
+ Author: Elizabeth Hunt
+ Location: ~inc/macros.h~
+ Input: a type, a size, and initial value
+ Output: a new ~Array_type~ with the given size filled with the initial value
#+BEGIN_SRC c
#define InitArrayWithSize(TYPE, SIZE, INIT_VALUE) \
({ \
Array_##TYPE *arr = malloc(sizeof(Array_##TYPE)); \
arr->size = SIZE; \
arr->data = malloc(arr->size * sizeof(TYPE)); \
for (size_t i = 0; i < arr->size; i++) \
arr->data[i] = INIT_VALUE; \
arr; \
})
#+END_SRC
**** ~InitMatrixWithSize~
+ Author: Elizabeth Hunt
+ Location: ~inc/macros.h~
+ Input: a type, number of rows, columns, and initial value
+ Output: a new ~Matrix_type~ of size ~rows x columns~ filled with the initial
value
#+BEGIN_SRC c
#define InitMatrixWithSize(TYPE, ROWS, COLS, INIT_VALUE) \
({ \
Matrix_##TYPE *matrix = malloc(sizeof(Matrix_##TYPE)); \
matrix->rows = ROWS; \
matrix->cols = COLS; \
matrix->data = malloc(matrix->rows * sizeof(Array_##TYPE *)); \
for (size_t y = 0; y < matrix->rows; y++) \
matrix->data[y] = InitArrayWithSize(TYPE, COLS, INIT_VALUE); \
matrix; \
})
#+END_SRc