2.9 KiB
Errors
Errors
$x,y \in \mathds{R}$, using y as a way to approximate x. Then the absolute error of in approximating x w/ y is $e_{abs}(x, y) = |x-y|$.
and the relative error is $e_{rel}(x, y) = \frac{|x-y|}{|x|}$
Table of Errors
(load "../cl/lizfcm.asd")
(ql:quickload 'lizfcm)
(defun eabs (x y) (abs (- x y)))
(defun erel (x y) (/ (abs (- x y)) (abs x)))
(defparameter *u-v* '(
(1 0.99)
(1 1.01)
(-1.5 -1.2)
(100 99.9)
(100 99)
))
(lizfcm.utils:table (:headers '("u" "v" "e_{abs}" "e_{rel}")
:domain-order (u v)
:domain-values *u-v*)
(eabs u v)
(erel u v))
u | v | eabs | erel |
1 | 0.99 | 0.00999999 | 0.00999999 |
1 | 1.01 | 0.00999999 | 0.00999999 |
-1.5 | -1.2 | 0.29999995 | 0.19999997 |
100 | 99.9 | 0.099998474 | 0.0009999848 |
100 | 99 | 1 | 1/100 |
Look at $u \approx 0$ then $v \approx 0$, $e_{abs}$ is better error since $e_{rel}$ is high.
Vector spaces & measures
Suppose we want solutions fo a linear system of the form $Ax = b$, and we want to approximate $x$, we need to find a form of "distance" between vectors in $\mathds{R}^n$
Vector Distances
A norm on a vector space $|| v ||$ is a function from $\mathds{R}^n$ such that:
- $||v|| \geq 0$ for all $v \in \mathds{R}^n$ and $||v|| = \Leftrightarrow v = 0$
- $||cv|| = |c| ||v||$ for all $c \in \mathds{R}, v \in \mathds{R}^n$
- $||x + y|| \leq ||x|| + ||y|| \forall x,y \in \mathds{R}^n$
Example norms:
$||v||_2 = || [v_1, v_2, \dots v_n] || = (v_1^2 + v_2^2 + \dots + v_n^2)^{}^{\frac{1}{2}}$
$||v||_1 = |v_1| + |v_2| + \dots + |v_n|$
$||v||_{\infty} = \text{max}(|v_i|)$ (most restriction)
p-norm: $||v||_p = \sum_{i=1}^{h} (|v_i|^p)^{\frac{1}{p}}$
Length
The length of a vector in a given norm is $||v|| \forall v \in \mathds{R}^n$
All norms on finite dimensional vectors are equivalent. Then exist constants $\alpha, \beta > 0 \ni \alpha ||v||_p \leq ||v||_q \leq \beta||v||_p$
Distance
Let $u,v$ be vectors in $\mathds{R}^n$ then the distance is $||u - v||$ by some norm: $e_{abs} = d(v, u) = ||u - v||$
The relative errors is:
$e_{rel} = \frac{||u - v||}{||v||}$
Approxmiating Solutions to $Ax = b$
We define the residual vector $r(x) = b - Ax$
If $x$ is the exact solution, then $r(x) = 0$.
Then we can measure the "correctness" of the approximated solution on the norm of the residual. We want to minimize the norm.
But, $r(y) = b - Ay \approx 0 \nRightarrow y \equiv x$, if $A$ is not invertible.