q5 hw7
This commit is contained in:
parent
793c01c9bd
commit
0981ffa00c
@ -1096,7 +1096,44 @@ double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
|
|||||||
return shift_inverse_power_eigenvalue(m, v, 0.0, tolerance, max_iterations);
|
return shift_inverse_power_eigenvalue(m, v, 0.0, tolerance, max_iterations);
|
||||||
}
|
}
|
||||||
#+END_SRC
|
#+END_SRC
|
||||||
|
*** ~partition_find_eigenvalues~
|
||||||
|
+ Author: Elizabeth Hunt
|
||||||
|
+ Name: ~partition_find_eigenvalues~
|
||||||
|
+ Location: ~src/eigen.c~
|
||||||
|
+ Input: a pointer to an invertible matrix ~m~, a matrix whose rows correspond to initial
|
||||||
|
eigenvector guesses at each "partition" which is computed from a uniform distribution
|
||||||
|
between the number of rows this "guess matrix" has and the distance between the least
|
||||||
|
dominant eigenvalue and the most dominant. Additionally, a ~max_iterations~ and a ~tolerance~
|
||||||
|
that act as stop conditions.
|
||||||
|
+ Output: a vector of ~doubles~ corresponding to the "nearest" eigenvalue at the midpoint of
|
||||||
|
each partition, via the given guess of that partition.
|
||||||
|
#+BEGIN_SRC c
|
||||||
|
Array_double *partition_find_eigenvalues(Matrix_double *m,
|
||||||
|
Matrix_double *guesses,
|
||||||
|
double tolerance,
|
||||||
|
size_t max_iterations) {
|
||||||
|
assert(guesses->rows >=
|
||||||
|
2); // we need at least, the most and least dominant eigenvalues
|
||||||
|
|
||||||
|
double end = dominant_eigenvalue(m, guesses->data[guesses->rows - 1],
|
||||||
|
tolerance, max_iterations);
|
||||||
|
double begin =
|
||||||
|
least_dominant_eigenvalue(m, guesses->data[0], tolerance, max_iterations);
|
||||||
|
|
||||||
|
double delta = (end - begin) / guesses->rows;
|
||||||
|
Array_double *eigenvalues = InitArrayWithSize(double, guesses->rows, 0.0);
|
||||||
|
for (size_t i = 0; i < guesses->rows; i++) {
|
||||||
|
double box_midpoint = ((delta * i) + (delta * (i + 1))) / 2;
|
||||||
|
|
||||||
|
double nearest_eigenvalue = shift_inverse_power_eigenvalue(
|
||||||
|
m, guesses->data[i], box_midpoint, tolerance, max_iterations);
|
||||||
|
|
||||||
|
eigenvalues->data[i] = nearest_eigenvalue;
|
||||||
|
}
|
||||||
|
|
||||||
|
return eigenvalues;
|
||||||
|
}
|
||||||
|
#+END_SRC
|
||||||
*** ~leslie_matrix~
|
*** ~leslie_matrix~
|
||||||
+ Author: Elizabeth Hunt
|
+ Author: Elizabeth Hunt
|
||||||
+ Name: ~leslie_matrix~
|
+ Name: ~leslie_matrix~
|
||||||
|
@ -41,3 +41,21 @@ With the initial guess: $[0.5, 1.0, 0.75]$.
|
|||||||
|
|
||||||
See also the entry ~Eigen-Adjacent -> shift_inverse_power_eigenvalue~ in the LIZFCM API
|
See also the entry ~Eigen-Adjacent -> shift_inverse_power_eigenvalue~ in the LIZFCM API
|
||||||
documentation.
|
documentation.
|
||||||
|
* Question Five
|
||||||
|
See ~UTEST(eigen, partition_find_eigenvalues)~ in ~test/eigen.t.c~ which
|
||||||
|
finds the eigenvalues in a partition of 10 on the matrix:
|
||||||
|
|
||||||
|
\begin{bmatrix}
|
||||||
|
2 & 2 & 4 \\
|
||||||
|
1 & 4 & 7 \\
|
||||||
|
0 & 2 & 6
|
||||||
|
\end{bmatrix}
|
||||||
|
|
||||||
|
which has eigenvalues: $5 + \sqrt{17}, 2, 5 - \sqrt{17}$, and should produce all three from
|
||||||
|
the partitions when given the guesses $[0.5, 1.0, 0.75]$ from the questions above.
|
||||||
|
|
||||||
|
See also the entry ~Eigen-Adjacent -> partition_find_eigenvalues~ in the LIZFCM API
|
||||||
|
documentation.
|
||||||
|
|
||||||
|
* Question Six
|
||||||
|
|
||||||
|
@ -82,6 +82,10 @@ extern double shift_inverse_power_eigenvalue(Matrix_double *m, Array_double *v,
|
|||||||
extern double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
|
extern double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
|
||||||
double tolerance,
|
double tolerance,
|
||||||
size_t max_iterations);
|
size_t max_iterations);
|
||||||
|
extern Array_double *partition_find_eigenvalues(Matrix_double *m,
|
||||||
|
Matrix_double *guesses,
|
||||||
|
double tolerance,
|
||||||
|
size_t max_iterations);
|
||||||
extern Matrix_double *leslie_matrix(Array_double *age_class_surivor_ratio,
|
extern Matrix_double *leslie_matrix(Array_double *age_class_surivor_ratio,
|
||||||
Array_double *age_class_offspring);
|
Array_double *age_class_offspring);
|
||||||
#endif // LIZFCM_H
|
#endif // LIZFCM_H
|
||||||
|
26
src/eigen.c
26
src/eigen.c
@ -84,6 +84,32 @@ double shift_inverse_power_eigenvalue(Matrix_double *m, Array_double *v,
|
|||||||
return lambda;
|
return lambda;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Array_double *partition_find_eigenvalues(Matrix_double *m,
|
||||||
|
Matrix_double *guesses,
|
||||||
|
double tolerance,
|
||||||
|
size_t max_iterations) {
|
||||||
|
assert(guesses->rows >=
|
||||||
|
2); // we need at least, the most and least dominant eigenvalues
|
||||||
|
|
||||||
|
double end = dominant_eigenvalue(m, guesses->data[guesses->rows - 1],
|
||||||
|
tolerance, max_iterations);
|
||||||
|
double begin =
|
||||||
|
least_dominant_eigenvalue(m, guesses->data[0], tolerance, max_iterations);
|
||||||
|
|
||||||
|
double delta = (end - begin) / guesses->rows;
|
||||||
|
Array_double *eigenvalues = InitArrayWithSize(double, guesses->rows, 0.0);
|
||||||
|
for (size_t i = 0; i < guesses->rows; i++) {
|
||||||
|
double box_midpoint = ((delta * i) + (delta * (i + 1))) / 2;
|
||||||
|
|
||||||
|
double nearest_eigenvalue = shift_inverse_power_eigenvalue(
|
||||||
|
m, guesses->data[i], box_midpoint, tolerance, max_iterations);
|
||||||
|
|
||||||
|
eigenvalues->data[i] = nearest_eigenvalue;
|
||||||
|
}
|
||||||
|
|
||||||
|
return eigenvalues;
|
||||||
|
}
|
||||||
|
|
||||||
double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
|
double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
|
||||||
double tolerance, size_t max_iterations) {
|
double tolerance, size_t max_iterations) {
|
||||||
return shift_inverse_power_eigenvalue(m, v, 0.0, tolerance, max_iterations);
|
return shift_inverse_power_eigenvalue(m, v, 0.0, tolerance, max_iterations);
|
||||||
|
@ -1,4 +1,5 @@
|
|||||||
#include "lizfcm.test.h"
|
#include "lizfcm.test.h"
|
||||||
|
#include <math.h>
|
||||||
|
|
||||||
Matrix_double *eigen_test_matrix() {
|
Matrix_double *eigen_test_matrix() {
|
||||||
// produces a matrix that has eigenvalues [5 + sqrt{17}, 2, 5 - sqrt{17}]
|
// produces a matrix that has eigenvalues [5 + sqrt{17}, 2, 5 - sqrt{17}]
|
||||||
@ -69,6 +70,40 @@ UTEST(eigen, shifted_eigenvalue) {
|
|||||||
EXPECT_NEAR(approx_middle_eigenvalue, expected_middle_eigenvalue, tolerance);
|
EXPECT_NEAR(approx_middle_eigenvalue, expected_middle_eigenvalue, tolerance);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
UTEST(eigen, partition_find_eigenvalues) {
|
||||||
|
Matrix_double *m = eigen_test_matrix();
|
||||||
|
|
||||||
|
double least_dominant_eigenvalue = 0.87689; // 5 - sqrt{17}
|
||||||
|
double dominant_eigenvalue = 9.12311; // 5 + sqrt{17}
|
||||||
|
double expected_middle_eigenvalue = 2.0;
|
||||||
|
double expected_eigenvalues[3] = {least_dominant_eigenvalue,
|
||||||
|
expected_middle_eigenvalue,
|
||||||
|
dominant_eigenvalue};
|
||||||
|
|
||||||
|
size_t partitions = 10;
|
||||||
|
Matrix_double *guesses = InitMatrixWithSize(double, partitions, 3, 0.0);
|
||||||
|
for (size_t y = 0; y < guesses->rows; y++) {
|
||||||
|
free_vector(guesses->data[y]);
|
||||||
|
guesses->data[y] = InitArray(double, {0.5, 1.0, 0.75});
|
||||||
|
}
|
||||||
|
|
||||||
|
double tolerance = 0.0001;
|
||||||
|
uint64_t max_iterations = 64;
|
||||||
|
|
||||||
|
int eigenvalues_found[3] = {false, false, false};
|
||||||
|
Array_double *partition_eigenvalues =
|
||||||
|
partition_find_eigenvalues(m, guesses, tolerance, max_iterations);
|
||||||
|
|
||||||
|
for (size_t i = 0; i < partition_eigenvalues->size; i++)
|
||||||
|
for (size_t eigenvalue_i = 0; eigenvalue_i < 3; eigenvalue_i++)
|
||||||
|
if (fabs(partition_eigenvalues->data[i] - expected_eigenvalues[i]) <=
|
||||||
|
tolerance)
|
||||||
|
eigenvalues_found[eigenvalue_i] = true;
|
||||||
|
|
||||||
|
for (size_t eigenvalue_i = 0; eigenvalue_i < 3; eigenvalue_i++)
|
||||||
|
EXPECT_TRUE(eigenvalues_found[eigenvalue_i]);
|
||||||
|
}
|
||||||
|
|
||||||
UTEST(eigen, leslie_matrix_dominant_eigenvalue) {
|
UTEST(eigen, leslie_matrix_dominant_eigenvalue) {
|
||||||
Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8});
|
Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8});
|
||||||
Array_double *survivor_ratios = InitArray(double, {0.8, 0.55});
|
Array_double *survivor_ratios = InitArray(double, {0.8, 0.55});
|
||||||
|
@ -1,7 +1,8 @@
|
|||||||
#include "lizfcm.h"
|
|
||||||
#include "utest.h"
|
|
||||||
|
|
||||||
#ifndef LIZFCM_TEST_H
|
#ifndef LIZFCM_TEST_H
|
||||||
#define LIZFCM_TEST_H
|
#define LIZFCM_TEST_H
|
||||||
|
|
||||||
|
#include "lizfcm.h"
|
||||||
|
|
||||||
|
#include "utest.h"
|
||||||
|
|
||||||
#endif // LIZFCM_TEST_H
|
#endif // LIZFCM_TEST_H
|
||||||
|
Loading…
Reference in New Issue
Block a user